بهینهسازی چندهدفه تکاملی برای معاملات جفتی چند متغیره در بورس اوراق بهادار تهران: رویکرد همانباشتگی
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارحسین نیکو 1 , جمال برزگری خانقاه 2 * , حمید رضا میرزایی 3
1 - دانشجوی دکتری، گروه حسابداری و مالی، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، یزد، ایران.
2 - دانشیار، گروه حسابداری و مالی، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، یزد، ایران.
3 - استادیار، گروه حسابداری و مالی، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، یزد، ایران.
کلید واژه: بهینهسازی چند هدفه, معاملات جفتی, الگوریتم ژنتیک, رویکرد همانباشتگی,
چکیده مقاله :
استراتژی معاملات جفتی یکی از قدیمیترین و رایجترین استراتژیهای آربیتراژ آماری محسوب میشود. تشکیل جفت یک مرحله مهم در معاملات جفتی است که فقط به روش دستی مورد بررسی قرار گرفته است و این روش در حالت چند متغیره شکست خورده و اهداف متناقض را در ساختار مسئله در نظر نمیگیرد. مسئله اصلی پژوهش حاضر ارائه روشی است که ترکیبهای جفتی چند متغیره را با در نظر گرفتن اهداف متناقض چندگانه و تمرکز بر رویکرد همانباشتگی ایجاد کند. لذا ترکیبی از سهام در دو هدف متضاد ریسک (بازگشت به میانگین) و بازده (واریانس اسپرد) بهینه میشوند تا مجموعهای از فرصتهای معاملات جفتی چند متغیره سودآور را تشکیل دهند. جامعه آماری، شرکتهای پذیرفته شده در بورس اوراق بهادار تهران هستند. نمونه آماری بهواسطه نیاز به معاملات پربسامد از 50 شرکت برتر محدود شده است. مسئله در قالب یک مدل برنامهریزی عدد صحیح مختلط (MIP) تدوین، و به دلیل محدودیتهای غیرمحدب و فضای حل نمایی از الگوریتم ژنتیک چندهدفه برای به دست آوردن ترکیبهای جفتی استفاده شده است. برای دستیابی به اهداف چندگانه، از نوع توسعهیافته الگوریتم ژنتیک؛ الگوریتم ژنتیک مرتبسازی نامغلوب آشوبناک (CNSGA-II) استفاده گردید. برای به دست آوردن راه حل های مناسب و با دقت بالا، از تئوری آشوب در ایجاد جمعیت اولیه الگوریتم ژنتیک استفاده شده است. تحقیقات نشان داده که استفاده از نظریه آشوب میتواند میزان همگرایی را در الگوریتمهای تکاملی افزایش دهد. نتایج آزمایش های این پژوهش نشان میدهد که استراتژی های معاملات جفتی چند هدفه با تمرکز بر رویکرد همانباشتگی نسبت به مدل تک هدفه سنتی از برتری معناداری برخوردار است.
Pair trading strategy is one of the oldest and most common statistical arbitrage strategies. Pair formation is an important step in pair trading that examined manually and this method fails in the multivariate mode and does not consider conflicting goals in the problem structure. The main problem in this study is to present a method that creates multivariate pair combinations with multiple contradictory goals and focusing on the integration approach. Therefore, a combination of stocks optimized for two opposite objectives: risk (mean-reversion) and return (spread variance) to form a set of profitable multivariate pair trading opportunities. The statistical population is companies listed on the Tehran Stock Exchange. The statistical sample limited by the need for high-frequency transactions from the top 50 companies. The problem developed in the form of a mixed integer-programming model (MIP), and due to non-convex constraints and exponential space, a multi-objective genetic algorithm used to obtain pair combinations. To achieve multiple goals, an advanced type of genetic algorithm; The Chaotic Non-dominated Sorting Genetic Algorithm (CNSGA-II) was used. The Chaos theory used to create the initial population of the genetic algorithm in order to obtain appropriate and high-precision solutions. Research has shown that the use of chaos theory can increase the degree of convergence in evolutionary algorithms. The results of the experiments of this study show that multi-objective pair trading strategies focusing on the integration approach have a significant advantage over the traditional single-objective model.
پاکیزه، کامران، حبیبی، ثمر (1396). مقایسه سودآوری استراتژی معاملات جفتی بین طبقات مختلف دارایی. فصلنامه علمی-پژوهشی مدیریت دارایی و تامین مالی، 4(5)، 69-88.
دستوری، مجتبی و مرادپور، سعید (1400). بهینهسازی الگوریتم معاملات زوجی پربسامد با استفاده از تلفیق الگوریتم ژنتیک و کنترل فرایند آماری فازی. نشریه دانش سرمایه گذاری ، 40(4)، 471-484.
فلاحپور، سعید، حکیمیان، حسن (1396). بررسی عملکرد سیستم معاملات زوجی در بورس اوراق بهادار تهران: رویکرد همانباشتگی و بررسی نسبت سورتینو. مجله مهندسی مالی و مدیریت اوراق بهادار، 30(1) 1-17.
مرادپور، سعید و دستوری، مجتبی (1400). کاربرد معاملات الگوریتمی و پایداری در بازار رمزارز. مجله مهندسی مالی و مدیریت اوراق بهادار، 47(2)، 435-449.
Brunetti, M., & De Luca, R. (2022). Sensitivity of Profitability in Cointegration-Based Pairs Trading.
Dao, S. D., Abhary, K., & Marian, R. (2017). An innovative framework for designing genetic algorithm structures. Expert Systems with Applications, 90, 196-208.
Ehrman, D. S. (2006). The handbook of pairs trading strategies using equities, options, and futures (Vol. 240). John Wiley & Sons.
Galenko, A., Popova, E., & Popova, I. Trading in the Presence of Cointegration 12.
Gillespie, T., & Ulph, C. (2001). Pair trades methodology: A question ofreversion. 8111 International C, 1.
Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion wesley, 1989(102), 36.
Goldkamp, J., & Dehghanimohammadabadi, M. (2019). Evolutionary multi-objective optimization for multivariate pairs trading. Expert Systems with Applications.
Granger, C. W. J., Castle, J. L., & Shephard, N. (2009). The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry. In Praise of Pragmatics in Econometrics, 429-448.
Hong, G., & Susmel, R. (2003). Pairs trading in the Asian ADR market. University of Houston, Unpublished Manuscript.
Isaksen, V. (2019). Cointegration and Pairs Trading in Major Cryptocurrencies (Master's thesis, University of Stavanger, Norway).
Justesen, L., & Mik-Meyer, N. (2010). Kvalitative metoder i organisations-og ledelsesstudier. Hans Reitzels Forlag.
Lazzarino, M., Berrill, J., & Šević, A. (2018). What is statistical arbitrage? Theoretical Economics Letters, 8(05), 888.
Lee, J., & Sabbaghi, N. (2020). Multi-objective optimization case study for algorithmic trading strategies in foreign exchange markets. Digital Finance, 2(1),15-37.
Lin, Y. X., McCrae, M., & Gulati, C. (2006). Loss protection in pairs trading through minimum profit bounds: A cointegration approach. Advances in Decision Sciences, 2006.
MA, B., & ŚLEPACZUK, R. THE PROFITABILITY OF PAIRS TRADING STRATEGIES ON HONG-KONG STOCK MARKET: DISTANCE, COINTEGRATION, AND CORRELATION METHODS.
Naccarato, A., Pierini, A., & Ferraro, G. (2021). Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment. Annals of Operations Research, 299(1), 81-99.
Payne, G., & Payne, J. (2004). Key concepts in social research. Sage.
Rabbani, M., Oladzad-Abbasabady, N., & Akbarian-Saravi, N. (2022). Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms. Journal of Industrial & Management Optimization, 18(2), 1035.
Shleifer, A., & Vishny, R. W. (1997). The limits of arbitrage. The Journal of finance, 52(1), 35-55.
Sonmez, R., & Bettemir, Ö. H. (2012). A hybrid genetic algorithm for the discrete time–cost trade-off problem. Expert Systems with Applications, 39(13), 11428-11434.
Tadi, M., & Kortchemski, I. (2021). Evaluation of dynamic cointegration-based pairs trading strategy in the cryptocurrency market. Studies in Economics and Finance.
Tahir, M. A., & Smith, J. E. (2007). Feature selection for heterogeneous ensembles of nearest-neighbour classifiers using hybrid tabu search. In Advances in metaheuristics for hard optimization (pp. 69-85). Springer, Berlin, Heidelberg.
Vidyamurthy, G. (2004). Pairs Trading: quantitative methods and analysis (Vol. 217). John Wiley & Sons.
Yan, T., & Wong, H. Y. (2021). Equilibrium Pairs Trading Under Delayed Cointegration. Available at SSRN 41172
_||_