مدلسازی و پیش بینی توزیع بازدهی شاخص کل بازار سرمایه ایران و رمزارز بیتکوین با روش زمان متغیر GAS
محورهای موضوعی : دانش مالی تحلیل اوراق بهادار
محمد ابراهیم سماوی
1
,
هاشم نیکو مرام
2
*
,
مهدی معدن چی زاج
3
,
احمد یعقوب نژاد
4
1 - گروه مدیریت مالی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مدیریت مالی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران (نویسنده مسئول)
3 - گروه مدیریت مالی، واحد الکترونیکی، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه حسابداری، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: بازار سرمایه ایران, بیتکوین, پیشبینی توزیع بازدهی, مدلسازی مالی, مدل GAS,
چکیده مقاله :
پیش بینی بازدهی با کمترین خطا یکی از مسائل بسیار مهم در بازارهای مالی است که مورد توجه پژوهشگران زیادی در چند دهة اخیر قرار گرفته است. مدل های خطی و غیرخطی سنتی با توجه به عدم کارایی کافی مدل های خطی در تلاطم های قیمتی، عدم استخراج صحیح شکل توزیع شرطی داده ها به علت ضبط نشدن پویایی توزیع شرطی در مدل های غیرخطی و وجود فرضهای محدود کننده خلاف واقعیت، توانایی مناسبی جهت پیش بینی بازدهی در دنیای امروز ندارد. در جهت رفع نقصان مدل های سنتی، در پژوهش حاضر با استفاده از روش نوین زمان-متغیر به نام امتیاز خود رگرسیونی تعمیم یافته (GAS) مدلسازی در راستای پیش بینی توزیع بازدهی شاخص کل بورس اوراق بهادار طی بازه 1390 الی 1399 و برای رمزارز بیت کوین طی بازه سال 2014 تا 2020 میلادی انجام شده است. نتایج مدل سازی شده برای دو دارایی توسط مدل نوین GAS با نتایج مدل های GARCH و AR مقایسه شده و عملکرد آنها برای درون و برون نمونه آزموده شده است. نتایج آزمون های درون و برون نمونه ای نشان دهنده این است که جهت پیش بینی توزیع بازدهی روزانه شاخص کل مدل نوین GAS عملکرد بهتری داشته و برای پیش بینی توزیع بازدهی روزانه بیت کوین مدل GARCH ارجح تر بوده است.
Predicting returns with the least error is one of the most important issues in financial markets that has been considered by many researchers in recent decades .Traditional linear and nonlinear models due to the inefficiency of linear models in market turbulence, the lack of correct extraction of the conditional distribution form of data due to the failure to record the conditional distribution dynamics in nonlinear models and the existence of limiting assumptions, it lacks the ability to predict returns in different market conditions. In order to eliminate the disadvantages of traditional models, in the present study using a new time-variable method called generalized autoregressive score (GAS) in order to predict the distribution of return of the total index of the stock exchange during the period 2010 to 2020 and for Bitcoin during the period 2014 to 2020. The results of modeling for the two assets by the new GAS model are compared with the results of the GARCH and AR models and their performance is tested for inside and outside the sample. The results show that in order to predict the daily return, the overall index of the new GAS model has a better performance and in order to predict the daily return of bitcoin, the GARCH model has been preferred.
_||_