بررسی، شناسایی و اندازهگیری آفتکشها و سموم و تأثیر آن بر منابع آبی شهر تبریز
محورهای موضوعی :
بهداشت مواد غذایی
سارا نیک مرام
1
,
سهیلا محمدیاری
2
,
جعفر ابوالحسنی
3
*
,
محمد ابراهیم رمضانی
4
,
اصغر ریاضتی
5
1 - کارشناس ارشد آزمایشگاه کنترل کیفیت آب و فاضلاب استان آذربایجانشرقی
2 - کارشناس مسئول آزمایشگاه کنترل کیفیت آب و فاضلاب استان آذربایجانشرقی
3 - دانشیار گروه شیمی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
4 - استادیار گروه علوم و مهندسی محیط زیست، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
5 - کارشناس ارشد شرکت آب و فاضلاب استان یزد
تاریخ دریافت : 1400/12/04
تاریخ پذیرش : 1401/03/31
تاریخ انتشار : 1400/11/01
کلید واژه:
اندازهگیری,
میکرواستخراج مایع_ مایع کمک شده با هوا,
آفتکش و GC-MS,
چکیده مقاله :
باقیمانده آفتکشها و سموم شیمیایی درآب، محصولات کشاورزی و غذایی که پیامد مستقیم سمپاشیهای مکرر، نابجا و بیش از حد محصول در دوران رشد است، سلامت مصرفکننده را بهطور جدی تهدید میکند. بنابراین، شناسایی و تعیین باقیمانده سموم درمنابع آب شرب از اهمیت ویژهای برخوردار است. پس از مطالعات میدانی روی سموم مصرفی قانونی و غیرقانونی در استان آذربایجانشرقی، نمونهبرداری در چهار فاز مختلف از منابع آبی مشخص شده انجام گرفت. سموم و آفتکشها با روش میکرواستخراج مایع-مایع کمک شده با هوا استخراج شده و با دستگاه GC-MS شناسایی و اندازهگیری شدند. متعاقب بهینهسازی شرایط استخراج و شرایط دستگاهی، 7pH= ، مقدار نمک برابر با 1/0 گرم، زمان استخراج 5 دقیقه، تعداد مکش 5 و حلال استخراج کننده 1،2،1،1-تترا کلرو اتان بهعنوان پارامترهای بهینه انتخاب شدند. در شرایط بهینه نمودار کالیبراسیون برای سمهای شناسایی و استخراج شده ترسیم گردید. از نمونههای بررسی شده در منابع آبی شهرتبریز سموم مالاتیون، دیازینون، فن پروپاترین، آترازین، کلروپیرفیوس و شناسایی شدند.
چکیده انگلیسی:
Residues of pesticides and chemical toxins in water, crops, and food, which are a direct consequence of repeated, misplaced, and over-spraying of the crop during the growing season, seriously threaten the consumers' health. Therefore, the determination of residual toxins in drinking water sources is of crucial importance. After field studies on legal and illegal pesticides used in East Azerbaijan province, sampling was performed in four phases of identified water sources. Toxins and pesticides were extracted by air-assisted liquid-liquid microextraction and assessed using GC-MS. Following optimization of extraction conditions and device conditions, pH = 7, the salt content of 0.1 g, extraction time of 5 minutes, 5 suctions and 1,2,1,1-tetrachloroethane as the extraction solvent were selected as the optimal parameters. Under optimal conditions, a calibration diagram was drawn for the identified and extracted toxins. Malathion, diazinon, fenpropathrin, atrazine, and chlorpyrifos was traced in Tabriz water sources.
منابع و مأخذ:
Abbot, D.C. (1969). The application of thin layer chromatography technique to analysis residue. Journal of Chromatography A, 2: 638-644.
Bagheri, F. (2006). The phosphorus intake of pesticide residues (Zynfvs methyl and diazinon) in Gorganroud and Qara Su river water and fish in Golestan province. Journal of School of Public Health Institute of Public Health Research, 6: 75-82.
Bedass, T., Gure, A. and Megersa, N. (2017). The QuEChERS analytical method combined with low density solvent based dispersive liquid–liquid microextraction for quantitative extraction of multiclass pesticide residues in cereals. Bulletin of the Chemical Society of Ethiopia, 31(1): 1-15.
De, A., Bose, R., Kumar, A. and Mozumdar, S. (2014), Chapter 2: Worldwide Pesticide Use. Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles, Chapter 2: Worldwide pesticide use, Springer Briefs in Molecular Science.
Driskell, W.J., Shih, M., Needham, L.L. and Barr, D.B. (2002). Quantitation of organophosphorus never agent metabolites in human urine using isotope dilution gas chromatography– tandem mass spectrometry. Journal of Analytical Toxicology, 26: 6–10.
Farajzadeh, M.A., Bahram, M., Vardast, M.R. and Bamorowat, M. (2011). Dispersive liquid– liquid microextraction for the analysis of three organophosphorus pesticides in real samples by high performance liquid chromatography– ultraviolet detection and its optimization by experimental design. Microchimica Acta. 172: 465–470.
Farajzadeh, M.A., Mohebbi, A. and Feriduni, B. (2016). Development of simple and efficient pretreatment technique named pH–depended continuous homogeneous liquid–liquid extraction. Analytical Methods. 8: 5676–5683.
Fernández, M., Picó, y. and Mañes, J. (2003). Simultaneous determination of carbamate and organophosphorus pesticides in honeybees by liquid chromatography– mass spectrometry. Chromatographia, 58: 151–158.
Garrido Frenich, A., Martínez Vidal, J.L., Cruz Sicilia, A.D., González Rodríguez, M.J. and Plaza Bolaños, P. (2006). Multiresidue analysis of organochlorine and organophosphorus pesticides in muscle of chicken, pork and lamb by gas chromatography–triple quadrupole mass spectrometry. Analytica Chimica Acta. 558: 42–52.
Gao, P., Liu, Z., Tai, M., Sun, D.D. and Ng, W. (2013). Multifunctional graphene oxide–TiO 2 microsphere hierarchical membrane for clean water production. Applied Catalysis B, 138: 17-25.
Honarpazhvh, S. K. (1992). Investigate and determine the amount residual insecticides diazinon and methyl Foss Azin in the Mahabad river and Simineh. M.S. Thesis, Tehran University of Medical Sciences, Tehran. [In Persian].
Kjerstine, R., Johan, L., Claudia, B., Åsa, O., Theo, L., Ove, J. and Jenny, K.A. (2019). Assessment of pesticides in surface water samples from Swedish agricultural areas by integrated bioanalysis and chemical analysis. Environmental Sciences Europe, 31: 53-59.
Kjærstad, M.B., Taxvig, C., Nellemann, C., Vinggaard, A.M. and Andersen, H.R. (2010). Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reproductive Toxicology, 30: 573–582.
Li, J., Sun, M., Chang, Q., Hu, X., Kang, J. and Fan, C. (2017). Determination of pesticide residues in teas via QuEChERS combined with dispersive liquid–liquid microextraction followed by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 80: 1447-1458.
Poulsen, M.E., Hansen, H.K., Sloth, J.J., Christensen, H.B. and Andersen, J.H. )2007(. Survey of pesticide residues in table grapes: determination of processing factors intake and risk assessment. Food Additives & Contaminants: Part A, 24: 886–895.
Ruiz, C., Llamas, G., Puerta, A., Blanco, E., Medel, A. and Marina, M. (2005). Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis. Application to the determination of malation in water samples after preconcentration by off-line solid-phase extraction. Analytica Chimica Acta, 543: 77-83.
Sanghi, R. and Tewari, V. (2001). Monitoring of pesticide residues in summer fruits and vegetables from Kanpur. Bulletin of Environmental Contamination and Toxicology, 67: 587–593.
Torbati, M.A., Farajzadeh, M.A., Torbati, M., Alizadeh Nabil, A.A., Mohebbi, A. and Afshar Mogaddam, M.R. (2018). Development of salt and pH–induced solidified floating organic droplets homogeneous liquid–liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography–mass spectrometry. Talanta, 176: 565–572.
West, C., Cieslikiewicz–Bouet, M., Lewinski, K. and Gillaizeau, I. (2013). Enantiomeric separation of original heterocyclic organophosphorus compounds in supercritical fluid chromatography. Chirality, 25: 230–237.
Wu, C., Liu, N., Wu, Q., Wang, C. and Wang, Z. (2010). Application of ultrasound–assisted surfactant–enhanced emulsification microextraction for the determination of some organophosphorus pesticides in watersamples. Analytica Chimica Acta, 679: 56–62.
Wenwen, Z., Yang, S., Zou, N., Xu, L., Pan, C. and Mu, W. (2020). [Determination of 18 pesticide residues in environmental water by solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry]. Chinese Journal of Chromatography, 8: 826-832.
Yao, Z., Jiang, G., Liu, J. and Cheng, W. (2001). Application of solid–phase microextraction for the determination of organophosphorous pesticides in aqueous samples by gas chromatography with flame photometric detector. Talanta, 55: 807–814.
Zhou, Q., Bai, H., Xie, G. and Xiao, J. (2008). Trace determination of organophosphorus pesticides in environmental samples by temperature controlled ionic liquid dispersive liquid–phase microextraction. Journal of Chromatography A. 1188: 148–153.
Zietz, B.P., Laß. J. and Suchenwirth, R. (2007). Assessment and management of tap water lead contamination in Lower Saxony Germany. International Journal of Environmental Health Research, 17(6): 407-18.
_||_
Abbot, D.C. (1969). The application of thin layer chromatography technique to analysis residue. Journal of Chromatography A, 2: 638-644.
Bagheri, F. (2006). The phosphorus intake of pesticide residues (Zynfvs methyl and diazinon) in Gorganroud and Qara Su river water and fish in Golestan province. Journal of School of Public Health Institute of Public Health Research, 6: 75-82.
Bedass, T., Gure, A. and Megersa, N. (2017). The QuEChERS analytical method combined with low density solvent based dispersive liquid–liquid microextraction for quantitative extraction of multiclass pesticide residues in cereals. Bulletin of the Chemical Society of Ethiopia, 31(1): 1-15.
De, A., Bose, R., Kumar, A. and Mozumdar, S. (2014), Chapter 2: Worldwide Pesticide Use. Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles, Chapter 2: Worldwide pesticide use, Springer Briefs in Molecular Science.
Driskell, W.J., Shih, M., Needham, L.L. and Barr, D.B. (2002). Quantitation of organophosphorus never agent metabolites in human urine using isotope dilution gas chromatography– tandem mass spectrometry. Journal of Analytical Toxicology, 26: 6–10.
Farajzadeh, M.A., Bahram, M., Vardast, M.R. and Bamorowat, M. (2011). Dispersive liquid– liquid microextraction for the analysis of three organophosphorus pesticides in real samples by high performance liquid chromatography– ultraviolet detection and its optimization by experimental design. Microchimica Acta. 172: 465–470.
Farajzadeh, M.A., Mohebbi, A. and Feriduni, B. (2016). Development of simple and efficient pretreatment technique named pH–depended continuous homogeneous liquid–liquid extraction. Analytical Methods. 8: 5676–5683.
Fernández, M., Picó, y. and Mañes, J. (2003). Simultaneous determination of carbamate and organophosphorus pesticides in honeybees by liquid chromatography– mass spectrometry. Chromatographia, 58: 151–158.
Garrido Frenich, A., Martínez Vidal, J.L., Cruz Sicilia, A.D., González Rodríguez, M.J. and Plaza Bolaños, P. (2006). Multiresidue analysis of organochlorine and organophosphorus pesticides in muscle of chicken, pork and lamb by gas chromatography–triple quadrupole mass spectrometry. Analytica Chimica Acta. 558: 42–52.
Gao, P., Liu, Z., Tai, M., Sun, D.D. and Ng, W. (2013). Multifunctional graphene oxide–TiO 2 microsphere hierarchical membrane for clean water production. Applied Catalysis B, 138: 17-25.
Honarpazhvh, S. K. (1992). Investigate and determine the amount residual insecticides diazinon and methyl Foss Azin in the Mahabad river and Simineh. M.S. Thesis, Tehran University of Medical Sciences, Tehran. [In Persian].
Kjerstine, R., Johan, L., Claudia, B., Åsa, O., Theo, L., Ove, J. and Jenny, K.A. (2019). Assessment of pesticides in surface water samples from Swedish agricultural areas by integrated bioanalysis and chemical analysis. Environmental Sciences Europe, 31: 53-59.
Kjærstad, M.B., Taxvig, C., Nellemann, C., Vinggaard, A.M. and Andersen, H.R. (2010). Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reproductive Toxicology, 30: 573–582.
Li, J., Sun, M., Chang, Q., Hu, X., Kang, J. and Fan, C. (2017). Determination of pesticide residues in teas via QuEChERS combined with dispersive liquid–liquid microextraction followed by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 80: 1447-1458.
Poulsen, M.E., Hansen, H.K., Sloth, J.J., Christensen, H.B. and Andersen, J.H. )2007(. Survey of pesticide residues in table grapes: determination of processing factors intake and risk assessment. Food Additives & Contaminants: Part A, 24: 886–895.
Ruiz, C., Llamas, G., Puerta, A., Blanco, E., Medel, A. and Marina, M. (2005). Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis. Application to the determination of malation in water samples after preconcentration by off-line solid-phase extraction. Analytica Chimica Acta, 543: 77-83.
Sanghi, R. and Tewari, V. (2001). Monitoring of pesticide residues in summer fruits and vegetables from Kanpur. Bulletin of Environmental Contamination and Toxicology, 67: 587–593.
Torbati, M.A., Farajzadeh, M.A., Torbati, M., Alizadeh Nabil, A.A., Mohebbi, A. and Afshar Mogaddam, M.R. (2018). Development of salt and pH–induced solidified floating organic droplets homogeneous liquid–liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography–mass spectrometry. Talanta, 176: 565–572.
West, C., Cieslikiewicz–Bouet, M., Lewinski, K. and Gillaizeau, I. (2013). Enantiomeric separation of original heterocyclic organophosphorus compounds in supercritical fluid chromatography. Chirality, 25: 230–237.
Wu, C., Liu, N., Wu, Q., Wang, C. and Wang, Z. (2010). Application of ultrasound–assisted surfactant–enhanced emulsification microextraction for the determination of some organophosphorus pesticides in watersamples. Analytica Chimica Acta, 679: 56–62.
Wenwen, Z., Yang, S., Zou, N., Xu, L., Pan, C. and Mu, W. (2020). [Determination of 18 pesticide residues in environmental water by solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry]. Chinese Journal of Chromatography, 8: 826-832.
Yao, Z., Jiang, G., Liu, J. and Cheng, W. (2001). Application of solid–phase microextraction for the determination of organophosphorous pesticides in aqueous samples by gas chromatography with flame photometric detector. Talanta, 55: 807–814.
Zhou, Q., Bai, H., Xie, G. and Xiao, J. (2008). Trace determination of organophosphorus pesticides in environmental samples by temperature controlled ionic liquid dispersive liquid–phase microextraction. Journal of Chromatography A. 1188: 148–153.
Zietz, B.P., Laß. J. and Suchenwirth, R. (2007). Assessment and management of tap water lead contamination in Lower Saxony Germany. International Journal of Environmental Health Research, 17(6): 407-18.