Comparison of laboratory and semi-industrial extraction methods for β-glucan-rich polysaccharide production from Shiitake mushroom (Lentinula edodes)
Subject Areas : food biotechnology
sharareh rezaeian
1
*
,
Hamidreza Pourianfar
2
1 - Industrial Fungi Biotechnology Research Department, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
2 - Industrial Fungi Biotechnology Research Department, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
Keywords: Shiitake, β-glucan, polysaccharides, extraction, semi-industrial scale, nutrition, safety,
Abstract :
Shiitake mushroom (Lentinula edodes) is recognized as a potent source of health-promoting polysaccharides, particularly β-glucans. This study established a semi-industrial protocol for producing β-glucan-enriched polysaccharide extracts from dried shiitake fruiting bodies. A multi-step procedure involving hot-water extraction, ethanol precipitation, and spray drying was implemented at both laboratory and semi-industrial scales. The extraction yield reached 33.00% at the laboratory scale and 25.00% at the semi-industrial scale. Enzymatic quantification indicated β-glucan and α-glucan contents of approximately 28.00% and 5.00%, respectively, with no significant variation between scales (p ≥ 0.05). The final extract demonstrated acceptable microbial quality, an absence of toxic metals and pathogens, and favorable nutritional characteristics. Compared to a commercial reference product available in the Iranian market, the extract exhibited higher protein and fiber contents, as well as more than double the β-glucan concentration (28.00% vs. 13.6%). The method developed in the present study offers a scalable, reproducible, and economically viable approach for the production of high-purity shiitake polysaccharide extracts suitable for functional food and nutraceutical applications.
1. Al-Saffar, A. Z., Hadi, N. A., & Khalaf, H. M. (2020). Antitumor activity of β-glucan extracted from Pleurotus eryngii. Indian Journal of Forensic Medicine & Toxicology, 14(3), 2493–2498. http://doi.org/10.37506/ijfmt.v14i3.10811
2. Amir Shah, R., Rasouli, A., Vahidi, H., & Kobarfard, F. (2024). Molecular identification of Shiitake (Lentinula edodes), analysis and production of beta-glucan using beech wood sawdust waste. International Journal of Biological Macromolecules, 280(Part 1), 135539. https://doi.org/10.1016/j.ijbiomac.2024.135539
3. Atila, F. (2019). Compositional changes in lignocellulosic content of some agro-wastes during the production cycle of shiitake mushroom. Scientia Horticulturae, 245, 263–268. https://doi.org/10.1016/j.scienta.2018.10.029
4. Avni, S., Ezove, N., Hanani, H., Yadid, I., Karpovsky, M., Hayby, H., et al. (2017). Olive mill waste enhances α-glucan content in the edible mushroom Pleurotus eryngii. International Journal of Molecular Sciences, 18(7), 1564. https://doi.org/10.3390/ijms18071564
5. Bak, W. C., Park, J. H., Park, Y. A., & Ka, K. H. (2014). Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology, 42(3), 301–304. https://doi.org/10.5941/MYCO.2014.42.3.301
6. Dai, Y., Wang, L., Chen, X., Song, A., He, L., Wang, L., et al. (2023). Lentinula edodes Sing polysaccharide: Extraction, characterization, bioactivities, and emulsifying applications. Foods, 12(17), 3289. https://doi.org/10.3390/foods12173289
7. Ebrahim, R. M., Kashaninezhad, M., Mirzaei, H. E., & Khomeiri, M. (2010). Effect of temperature, osmotic solution concentration and mass ratio on kinetics of osmotic dehydration of button mushroom (Agaricus bisporus). Journal of Agricultural Science and Natural Resources, 16(1A), 208-216
8. Gil-Ramirez, A., Clavijo, C., Palanisamy, M., Soler-Rivas, C., Ruiz-Rodriguez, A., Marín, F. R., et al. (2011). Edible mushrooms as potential sources of new hypocholesterolemic compounds. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (Vol. 2, pp. 110–119).
9. Gover, O., Hayby, H., Levy, A., Fishman, E., Danay, O., Ezov, N., et al. (2019). Enhanced anti-inflammatory effects by glucans extracted from the stalks of Pleurotus eryngii grown in substrates containing olive mill waste. Journal of Nutrition and Health & Food Science, 7(2), 1-12. https://doi.org/10.15226/jnhfs.2019.001155
10. Handayani, D., Meyer, B. J., Chen, J., Tang, P., Kwok, P. C. L., Chan, H. K., et al. (2012). The comparison of the effect of oat and shiitake mushroom powder to prevent body weight gain in rats fed high fat diet. Food and Nutrition Sciences, 3(7), 1009-1011. https://doi.org/10.4236/fns.2012.37134
11. Jiamyangyuen, S., Srijesdaruk, V., & Harper, W. J. (2005). Extraction of rice bran protein concentrate and its application in bread. Journal of Science and Technology, 27(1), 55-64.
12. Kim, J., Lim, J., Bae, I. Y., Park, H. G., Lee, H. Y. G., & Lee, S. (2010). Particle size effect of Lentinus edodes mushroom powder on the physicochemical, rheological, and oil-resisting properties of frying batters. Journal of Texture Studies, 41(3), 381–395. https://doi.org/10.1111/j.1745-4603.2010.00231x
13. Kozarski, M., Klaus, A., Nikšić, M., Vrvić, M. M., Todorović, N., Jakovljević, D., et al. (2012). Antioxidative activities and chemical characterization of polysaccharide extracts from widely used mushrooms. Journal of Food Composition and Analysis, 26(1-2), 144–153. https://doi.org/10.1016/j.jfca.2012.02.004
14. Liu, Y., & Huang, G. (2019). Extraction and derivatisation of active polysaccharides. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1690–1696. https://doi.org/10.1080/14756366.2019.1660654
15. Maheshwari, G., Sowrirajan, S., & Joseph, B. (2017). Extraction and isolation of β-glucan from grain sources-A review. Journal of Food Science, 82(7), 1535–1545. https://doi.org/10.1111/1750-3841.13765
16. McCleary, B. V., & Draga, A. (2016). Measurement of β-glucan in mushrooms and mycelial products. Journal of AOAC International, 99(2), 364–373. https://doi.org/10.5740/jaoacint.15-0289
17. Mohammadnejad, S., Pourianfar, H. R., Drakhshan, A., Jabaleh, I., & Rezayi, M. (2019). Potent antiproliferative and pro-apoptotic effects of a soluble protein fraction from Lentinus tigrinus. Journal of Food Measurement and Characterization, 13(4), 3015–3024. https://doi.org/10.1007/s11694-019-00222-4
18. Morales, D., Smiderle, F. R., Piris, A. J., Soler-Rivas, C., & Prodanov, M. (2019). Production of a β-D-glucan-rich extract from Lentinula edodes using microfiltration and reverse osmosis. Innovative Food Science & Emerging Technologies, 51, 80–90. https://doi.org/10.1016/j.ifset.2018.04.003
19. Noh, J. E., Yoon, S. R., Lim, A. K., Kim, H. J., Huh, D., & Kim, D. I. (2012). A study on the yield of functional components of citrus peel extracts using optimized hot water extraction and enzymatic hydrolysis. Korean Journal of Food and Cookery Science, 28(1), 51–55. https://doi.org/10.9724/kfcs.2012.28.1.051.
20. Oliveira, L. D. C., Oliveira, M., Meneghetti, V. L., Mazzutti, S., Colla, L. M., Elias, M. C., et al. (2012). Effect of drying temperature on quality of β-glucan in white oat grains. Food Science and Technology, 32(4), 775–783. https://doi.org/10.1590/S0101-206120120004000105
21. Peng, C., Kong, J., You, L., & Ma, F. (2011). Optimization of ultrasonic-assisted extraction of lentinan polysaccharides and antioxidant activity. Modern Food Science and Technology, 27(4), 452–456.
22. Pérez-Bassart, Z., Fabra, M. J., Martínez-Abad, A., & López-Rubio, A. (2023). Compositional differences of β-glucan-rich extracts from three relevant mushrooms. Food Chemistry, 402, 134207. https://doi.org/10.1016/j.foodchem.2022.134207
23. Philippoussis, A., Diamantopoulou, P., & Israilides, C. (2007). Productivity of agricultural residues for Lentinula edodes cultivation. International Biodeterioration & Biodegradation, 59(3), 216–219. https://doi.org/10.1016/j.ibiod.2006.10.007
24. Ren, Y., Bai, Y., Zhang, Z., Cai, W., & Del Rio Flores, A. (2019). Preparation and structure analysis methods of natural polysaccharides: A review. Molecules, 24(17), 3122. https://doi.org/10.3390/molecules24173122
25. Rezaeian, S., & Pourianfar, H. R. (2017). A comparative study on bioconversion of agro-wastes by wild and cultivated strains of Flammulina velutipes. Waste and Biomass Valorization, 8(8), 2631–2642. https://doi.org/10.1007/s12649-016-9698-7
26. Ruthes, A. C., Smiderle, F. R., & Iacomini, M. (2015). D-Glucans from edible mushrooms: A review. Carbohydrate Polymers, 117, 753–771.
https://doi.org/10.1016/j.carbpol.2014.10.051
27. Sari, M., Prange, A., Lelley, J. I., & Hambitzer, R. (2017). Screening of beta-glucan contents in cultivated and wild mushrooms. Food Chemistry, 216, 45–51. https://doi.org/10.1016/j.foodchem.2016.08.010
28. Singla, A., Gupta, O. P., Sagwal, V., Kumar, A., Patwa, N., Mohan, N., et al. (2024). Beta-glucan as a soluble dietary fiber: Origins, biosynthesis, bioavailability and applications. Nutrients, 16(6), 900. https://doi.org/10.3390/nu16060900
29. Smiderle, F. R., Morales, D., Gil-Ramírez, A., de Jesus, L. I., Gilbert-López, B., Iacomini, M., et al. (2017). Evaluation of microwave-assisted and pressurized liquid extractions of β-D-glucans from mushrooms. Carbohydrate Polymers, 156, 165–174. https://doi.org/10.1016/j.carbpol.2016.09.029
30. Wang, Y., & Zhang, H. (2021). Advances in extraction, purification, and bioactive mechanisms of Flammulina velutipes polysaccharides: A review. International Journal of Biological Macromolecules, 167, 528–538. https://doi.org/10.1016/j.ijbiomac.2020.11.028
31. Zechner-Krpan, V., Petravić-Tominac, V., Galović, P., Galović, V., Filipović-Grčić, J., & Srečec, S. (2010). Application of different drying methods on β-glucan isolated from spent brewer’s yeast using alkaline procedure, Agriculturae Conspectus Scientificus, 75(1), 45–50.
32. Zhang, M., Cui, S. W., Cheung, P. C. K., & Wang, Q. (2007). Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology, 18(1), 4-19. https://doi.org/10.1016/j.tifs.2006.07.013