The role of resistance and para-probiotics in nickel biosorption by probiotic lactobacilli
Subject Areas : food biotechnologyshokufeh Beglari 1 , Fariba Khodagoli 2 , Hamid Gholami Pourbadie 3 , alireza iranbakhsh 4 , Mahdi Rohani 5 *
1 - Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Shahid Beheshti University , Tehran, Iran
3 - Pasture Institute of Iran, Tehran, Iran
4 - استاد، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
5 - Pasture Institute of Iran, Tehran, Iran
Keywords: Lactobacillus, Probiotic, para probiotic, Biosorption, Desorption, Nickel ,
Abstract :
Background: Nickel is a major pollutant of water and food, playing a destructive role in the health disorders of humans. Recently, probiotic bacteria have been recognized as a highly secure and eco-friendly approach to nickel biodetoxification. Methods: Four lactobacillus strains, namely L. brevis 205, L. mucosae 226, L. plantarum 78, and L. casei 303 were investigated to assess their nickel resistance through disk diffusion and MIC methods. Strains with the highest and lowest resistance were selected for Bioremediation assays including Biosorption, Desorption, and Bioaccumulation. Results: L. brevis 205 and L. casei 303 exhibited the highest and lowest sensitivity to nickel, respectively. Both of them exhibited a plentiful performance in Biosorption assays, with 82.22% for L. brevis 205, and 72% for L. casei 303. The bioremoval assay with the para-probiotic (dead) biomass of the two strains exhibited a Biosorption yield of about 69% for L. brevis 205 and 75% for L. casei 303. Conclusion: both probiotic and para-probiotic biomass demonstrated excellent nickel Biosorption capability and L. casei 303 para-probiotic biomass outperformed L. brevis 205. Thus, probiotic Lactobacillus strains of this study could be brilliant candidates for nickel bioremoval in water, food, and pharmaceutical industries, regardless of bacterial resistance or viability.
References:
Afraz, V., Younesi, H., Bolandi, M., & Hadiani, M. R. (2021). Assessment of resistance and biosorption ability of Lactobacillus paracasei to remove lead and cadmium from aqueous solution. Water Environment Research, 93(9), 1589–1599.
Ahmed, S., Islam, M. R., Ferdousi, J., & Iqbal, T. S. (2017). Probiotic Lactobacillus sp. With bioremediation potential of toxic heavy metals. Bangladesh Journal of Microbiology, 34(1), 43–46.
Alimolaei, M., & Golchin, M. (2016). An Efficient DNA Extraction Method for Lactobacillus casei, a Difficult-to-Lyse Bacterium. International Journal of Enteric Pathogens, 4(1). https://doi.org/10.17795/ijep32472
Ameen, F. A., Hamdan, A. M., & El-Naggar, M. Y. (2020). Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Scientific Reports, 10(1), 1–11.
Arjomandzadegan, M., Rafiee, P., Moraveji, M. K., & Tayeboon, M. (2014). Efficacy evaluation and kinetic study of biosorption of nickel and zinc by bacteria isolated from stressed conditions in a bubble column. Asian Pacific Journal of Tropical Medicine, 7, S194–S198. https://doi.org/10.1016/S1995-7645(14)60231-5
Aryal, M., & Liakopoulou-Kyriakides, M. (2015). Bioremoval of heavy metals by bacterial biomass. Environmental Monitoring and Assessment, 187(1), 4173. https://doi.org/10.1007/s10661-014-4173-z
Ayele, A., Haile, S., Alemu, D., & Kamaraj, M. (2021). Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review. The Scientific World Journal, 2021, 5588111. https://doi.org/10.1155/2021/5588111
Beglari, S., Khodagholi, F., Gholami Pourbadie, H., Iranbakhsh, A., & Rohani, M. (2022). Biosorption and bioaccumulation of nickel by probiotic lactic acid bacteria isolated from human feces. Bioremediation Journal, 1–12.
Bhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M. Q. (2012a). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents: Heavy metal uptaking probiotics. Journal of Applied Microbiology, 112(6), 1193–1206. https://doi.org/10.1111/j.1365-2672.2012.05284.x
Bhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M. Q. (2012b). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents: Heavy metal uptaking probiotics. Journal of Applied Microbiology, 112(6), 1193–1206. https://doi.org/10.1111/j.1365-2672.2012.05284.x
Chojnacka, K. (2010). Biosorption and bioaccumulation – the prospects for practical applications. Environment International, 36(3), 299–307. https://doi.org/10.1016/j.envint.2009.12.001
Cockerill, F. R. (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. (No Title).
Cui, Y., Hu, T., Qu, X., Zhang, L., Ding, Z., & Dong, A. (2015). Plasmids from food lactic acid bacteria: Diversity, similarity, and new developments. International Journal of Molecular Sciences, 16(6), 13172–13202.
da Rocha Ferreira, G. L., Vendruscolo, F., & Antoniosi Filho, N. R. (2019). Biosorption of hexavalent chromium by Pleurotus ostreatus. Heliyon, 5(3).
Das, S., Dash, H. R., & Chakraborty, J. (2016). Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Applied Microbiology and Biotechnology, 100, 2967–2984.
Duda-Chodak, A., & Blaszczyk, U. (2008). The impact of nickel on human health. Journal of Elementology, 13(4), 685–693.
Elsanhoty, R. M., Al-Turki, I. A., & Ramadan, M. F. (2016). Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Science and Technology, 74(3), 625–638. https://doi.org/10.2166/wst.2016.255
Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. https://doi.org/10.1016/j.cofs.2015.03.001
Gasong, B. T., Abrian, S., & Sigit Setyabudi, F. M. C. (2017). Methylmercury Biosorption Activity by Methylmercury-resistant Lactic Acid Bacteria Isolated From West Sekotong, Indonesia. HAYATI Journal of Biosciences, 24(4), 182–186. https://doi.org/10.1016/j.hjb.2017.10.001
Grujović, M. Ž., Mladenović, K. G., Semedo‐Lemsaddek, T., Laranjo, M., Stefanović, O. D., & Kocić‐Tanackov, S. D. (2022). Advantages and disadvantages of non‐starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1537–1567.
Gupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006
Henderson, R. G., Durando, J., Oller, A. R., Merkel, D. J., Marone, P. A., & Bates, H. K. (2012). Acute oral toxicity of nickel compounds. Regulatory Toxicology and Pharmacology, 62(3), 425–432.
Hobman, J. L., & Crossman, L. C. (2015). Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology, 64(5), 471–497.
Hossain, M., Ngo, H., Guo, W., & Nguyen, T. (2012). Biosorption of Cu (II) from water by banana peel based biosorbent: Experiments and models of adsorption and desorption. Journal of Water Sustainability, 2(1), 87–104.
Huët, M. A. L., & Puchooa, D. (n.d.). Bioremediation of heavy metals from aquatic environment through microbial processes: A potential role for probiotics? 10.
Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 217, 56–70.
Kamika, I., & Momba, M. N. (2013). Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiology, 13, 1–14.
Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939.
Kinoshita, H. (2019). Biosorption of heavy metals by lactic acid bacteria for detoxification. Lactic Acid Bacteria: Methods and Protocols, 145–157.
Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., Saito, T., & Kimura, K. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164(7), 701–709. https://doi.org/10.1016/j.resmic.2013.04.004
Kittredge, H. A., Dougherty, K. M., & Evans, S. E. (2022). Dead but not forgotten: How extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil. Applied and Environmental Microbiology, 88(7), e02280-21.
Malkoc, S., Kaynak, E., & Guven, K. (2016). Biosorption of zinc (II) on dead and living biomass of Variovorax paradoxus and Arthrobacter viscosus. Desalination and Water Treatment, 57(33), 15445–15454.
Massoud, R., & Zoghi, A. (2022). Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. Journal of Applied Microbiology.
Mohapatra, R. K., Parhi, P. K., Pandey, S., Bindhani, B. K., Thatoi, H., & Panda, C. R. (2019). Active and passive biosorption of Pb (II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. Journal of Environmental Management, 247, 121–134.
Monachese, M., Burton, J. P., & Reid, G. (2012a). Bioremediation and Tolerance of Humans to Heavy Metals through Microbial Processes: A Potential Role for Probiotics? Applied and Environmental Microbiology, 78(18), 6397–6404. https://doi.org/10.1128/AEM.01665-12
Monachese, M., Burton, J. P., & Reid, G. (2012b). Bioremediation and Tolerance of Humans to Heavy Metals through Microbial Processes: A Potential Role for Probiotics? Applied and Environmental Microbiology, 78(18), 6397–6404. https://doi.org/10.1128/AEM.01665-12
Polak-Berecka, M., Boguta, P., Cieśla, J., Bieganowski, A., Skrzypek, T., Czernecki, T., & Waśko, A. (2017). Studies on the removal of Cd ions by gastrointestinal lactobacilli. Applied Microbiology and Biotechnology, 101(8), 3415–3425. https://doi.org/10.1007/s00253-016-8048-9
Qu, C., Yang, S., Mortimer, M., Zhang, M., Chen, J., Wu, Y., Chen, W., Cai, P., & Huang, Q. (2022). Functional group diversity for the adsorption of lead (Pb) to bacterial cells and extracellular polymeric substances. Environmental Pollution, 295, 118651.
Raklami, A., Meddich, A., Oufdou, K., & Baslam, M. (2022). Plants—Microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Sciences, 23(9), 5031.
Ray, M. K. (2009). Bioremediation Of Heavy Metal Toxicity-With Special Reference To Chromium. Ray S, 2, 7.
Rohani, M., Noohi, N., Talebi, M., Katouli, M., & Pourshafie, M. R. (2015). Highly Heterogeneous Probiotic Lactobacillus Species in Healthy Iranians with Low Functional Activities. PLOS ONE, 10(12), e0144467. https://doi.org/10.1371/journal.pone.0144467
Saba, Rehman, Y., Ahmed, M., & Sabri, A. N. (2019). Potential role of bacterial extracellular polymeric substances as biosorbent material for arsenic bioremediation. Bioremediation Journal, 23(2), 72–81.
Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M., Chergui, A., & Kerchich, Y. (2004). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochemical Engineering Journal, 19(2), 127–135.
Singh, A., Kumar, D., & Gaur, J. (2008). Removal of Cu (II) and Pb (II) by Pithophora oedogonia: Sorption, desorption and repeated use of the biomass. Journal of Hazardous Materials, 152(3), 1011–1019.
Suresh Kumar, A., Mody, K., & Jha, B. (2007). Bacterial exopolysaccharides–a perception. Journal of Basic Microbiology, 47(2), 103–117.
Tavana, M., Pahlavanzadeh, H., & Zarei, M. J. (2020). The novel usage of dead biomass of green algae of Schizomeris leibleinii for biosorption of copper (II) from aqueous solutions: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 8(5), 104272.
Teemu, H., Seppo, S., Jussi, M., Raija, T., & Kalle, L. (2008). Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. International Journal of Food Microbiology, 125(2), 170–175. https://doi.org/10.1016/j.ijfoodmicro.2008.03.041
Tian, F., Xiao, Y., Li, X., Zhai, Q., Wang, G., Zhang, Q., Zhang, H., & Chen, W. (2015). Protective effects of Lactobacillus plantarum CCFM8246 against copper toxicity in mice. PloS One, 10(11), e0143318.
Tian, F., Zhai, Q., Zhao, J., Liu, X., Wang, G., Zhang, H., Zhang, H., & Chen, W. (2012). Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biological Trace Element Research, 150, 264–271.
Vaid, N., Sudan, J., Dave, S., Mangla, H., & Pathak, H. (2022). Insight into microbes and plants ability for bioremediation of heavy metals. Current Microbiology, 79(5), 141.
Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369.
Vijayaraghavan, K., & Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002
Walter, J. (2008). Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Applied and Environmental Microbiology, 74(16), 4985–4996.
Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226.
Wierzba, S. (2015). Removal of Cu (II) and Pb (II) from aqueous solutions by lactic acid bacteria. Proceedings of ECOpole, 9(2), 505–512.
Yaashikaa, P., Kumar, P. S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, 301, 119035.
Yadav, M., Singh, G., & Jadeja, R. n. (2021). Physical and Chemical Methods for Heavy Metal Removal. In Pollutants and Water Management (pp. 377–397). John Wiley & Sons, Ltd. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119693635.ch15
Yi, Y.-J., Lim, J.-M., Gu, S., Lee, W.-K., Oh, E., Lee, S.-M., & Oh, B.-T. (2017). Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb (II) toxicity. Journal of Microbiology, 55, 296–303.