کربن آلی و ذخیره کربن آلی خاک در تودههای مدیریت شده و مدیریت نشده راش-ممرز
محورهای موضوعی : مدیریت محیط زیستمریم مصلحی 1 , هاشم حبشی 2 , رامین رحمانی 3 , هرمز سهرابی 4 , خسرو ثاقب طالبی 5
1 - استادیار پژوهش، بخش تحقیقات منابع طبیعی، مرکز تحقیقات کشاورزی و منابع طبیعی استان هرمزگان، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرعباس، ایران.
2 - دانشیارگروه جنگلشناسی و اکولوژی جنگل دانشگاه علوم کشارزی و منابع طبیعی، گرگان، ایران.
3 - دانشیار گروه جنگلشناسی و اکولوژی جنگل دانشگاه علوم کشارزی و منابع طبیعی گرگان، ایران.
4 - استادیار گروه جنگلداری دانشگاه تربیت مدرس، دانشکده منابع طبیعی و علوم دریایی، نور، ایران.
5 - دانشیار موسسه تحقیقات جنگلها و مراتع کشور. سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.
کلید واژه: شیوه گزینشی, جنگل مدیریت شده, ذخیره کربن آلی خاک, توده راش-ممرز,
چکیده مقاله :
زمینه و هدف: این تحقیق به منظور بررسی تاثیر فعالیت جنگلشناسی گزینشی بر کربن آلی (SOC) و ذخیره کربن آلی خاک (SOCP) در تودههای آمیخته راش-ممرز در سری یک طرح جنگلداری دکتر بهرامنیا استان گلستان انجام گرفت. روش بررسی: نمونه خاک سطحی (20-0 سانتیمتری) جهت اندازهگیری کربن آلی (OC) و درصد سنگ و سنگریزه و80 نمونه خاک با استفاده از سیلندر جهت تعیین وزن مخصوص ظاهری، از چهار توده یک هکتاری (عمق 20-0 سانتیمتری) در سال 1393 برداشت گردید. تیمارها شامل سه جنگل مدیریت شده (شیوه گزینشی) با مدت زمان 1، 7 و 10 سال گذشته از آخرین دخالت (بهترتیب تیمارهای مدیریت شده 1، 2 و 3) و جنگل مدیریت نشده (شاهد) بودند. سپس کربن آلی و ذخیره کربن آلی خاک محاسبه و با استفاده از آنالیز واریانس یکطرفه مقایسه گردید. یافتهها: نتایج نشان داد میزان کربن آلی و ذخیره کربن آلی خاک در بین چهار تیمار از اختلاف معنیداری در سطح 5 درصد برخوردار بوده و در تیمار مدیریت نشده بیشترین و تیمار مدیریت شده 1 کمترین مقدار را داشت. همچنین همبستگی خصوصیات خاک با استفاده از ضریب همبستگی پیرسون بررسی و نشان داد، ماده آلی با وزن مخصوص ظاهری و درصد سنگ و سنگریزه همبستگی منفی دارد. تیمار مدیریت نشده و تیمارهای مدیریت شده 1، 2 و 3 بهترتیب 021/280 و 046/124، 497/143 و 298/181 تن دیاکسیدکربن اتمسفر را برای ذخیره 3/76، 8/33، 1/39 و 4/49 تن کربن در خاک یک هکتار جنگل (20-0 سانتیمتر)، جذب نمودند
Background and Objective: In the present study the impact of silviculture activities on soil organic carbon (SOC) and soil organic carbon pool (SOCP) in the mixed beech-carpinus forest located in district one of Shastkolate forest, Golestan province, was investigated. Method: In the first month of growth season in 2014, from 4 one-hectare treatments, 80 soil samples were randomly collected (up to depth of 20 cm) for organic carbon and coarse fragments estimation and 80 soil sample cylinders were collected for bulk density measurement. Treatments were 3 managed forests (selection system) in time periods of 1, 7 and 10 after the last disturbance and 1 unmanaged forest (control). Amounts of SOC and SOCP in different treatments were compared by one-way variance analysis. Findings: Result showed that the amounts of SOC and SOCP in 4 treatments were different significantly (p< 0.05). Also the highest and the lowest SOC and SOCP were observed in the control and managed treatment 1, respectively. Correlation of soil properties was investigated using Pearson's correlation coefficient. Organic matter, bulk density and fragments had negative correlation (p< 0.01). Control forest, managed treatments 1, 2 and 3 absorbed 280.021, 124.046, 143.497 and 181.298 ton CO2 from atmosphere to store 76.3, 33.8, 39.1 and 49.4 ton carbon in soil in one hectare (0-20 cm), respectively.
1- Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., 2003, The carbon cycle and atmospher-ic CO2. In: The Third Assessment Report of Intergovernmen-tal Panel on Climate Change (IPCC). Chapter 3, Cambridge University Press, Cambridge.
2- Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K., Byrne, K. A., 2007. How strongly can forest management influence soil
3- carbon sequestration? Geoderma, Vol.137, pp. 253–268.
4- Post, W. M., Pengh, T. H., Emanuel, W., King, A. W., Dale, V. H. and Delnglis., 1990, The global carbon cycle. American Science, Vol. 78, pp. 310-326.
5- Davidson, E. A., Trumbore, S. E., Amudson R., 2000, Soil warming and organic carbon content. Nature, Vol. 408, pp. 789-790.
6- Hudson, R.J.M., Gherini, S.A., Goldstein, R.A., 1994. Modeling the global carbon cycle: nitrogen fertilization of the terrestrial biosphere and the ‘‘missing’’ CO2 sink. Global Biogeochemical Cycles, Vol. 8, pp. 307–333.
7- Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, Vol. 44B, pp. 81–99.
8- ورامش، سعید. حسینی، محسن و عبدی، نوراله، تاثیر جنگلکاری با گونههای پهنبرگ بر ترسیب کربن در خاک پارک جنگلی چیتگر، مجله پژوهشهای خاک، 1390، جلد 25، شماره 3.
9- Mallik, A., Hu, D., 1997. Soil respiration following site preparation treatments in boreal mixedwood forest. Forest Ecology and Management, Vol. 97, pp. 265–275.
10- Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles, F. P. et al. 2002: Soil warming and carbon-cycle feedbacks to the climate system. Science, Vol. 298, pp. 2173–2176.
11- Mund, M., 2004. Carbon pools European beech forests (Fagussylvitica) under different silvicultural management, Phd dissertation, Gottingen University, 263 p.
12- Perie, Ch., Quimet, R., 2007. Organic carbon, organic matter and bulk density relationship in boreal forest soil. Canadian Journal of Soil Science, pp. 315-325.
13- Schulp, C. J. E., Nabuurs, G., Veburg, P. H., de Waal, R. W., 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and management, Vol. 256, pp.482-490.
14- Hertel, D., Harteveld, A. M. Leuschner, C., 2009. Cnversion of tropical forest into agroforest alters fine root-related carbon flux to the soil. Soil Biology and Biochemistry, Vol. 41, pp. 481-490.
15- Chang, Ch. T., Wang, Ch. P., Chou, Ch. Z. Duh, Ch. T., 2010. The importance of litter biomass in estimating soil organic carbon pools in natural forests of Taiwan. Taiwan. Journal of Forest Science, Vol. 25 (2), pp. 171-180.
16- Nave, L., Vance, E., Swanston, Ch., Curtis, P., 2010. Harvest impact on soil carbon storage in temperate forests. Forest Ecology and management, 259, pp. 857-866.
17- Abugre, S., Oti-Boateng, C., Yeboah, M. F., 2011. Litter fall and decomposition trend of jatrophacurcasL.leaves mulches under two environmental conditions. Agri. and Bio. J. of North America, Vol. 2(3), pp. 462-470.
18- Gelman, V., Hulkkonen, V., Kantola, R., Nousianen, M., Nousianen, V., Poku-Marboah, M., 2013. Impact of forest management practices on forest carbon. Interdisciplinary approach to forests and climate change. University of Helsinky., 20 pp.
19- Schlesinger, W. H. 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, Vol. 8, pp. 51–81.
20- WBGU (Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen). 1998. Die Anrechnung biologischer Quellen und Senken im Kyoto-Protokoll: Fortschritt Oder Rückschlag für den globalen Umweltschutz. Sondergutachten. Bremerhaven, Germany. 76 p.
21- Hontoria, C., Rodriguez-Murillo, J. C., Saa, A., 1999. Relationship between soil organic carbon and site charactristics in peninsular Spain. Soil Science Society of American Journal, Vol. 63, pp. 614-621.
22- Wang. Y., Amundson R. and Trumbore. S. 1999. The impact of land use change on C turnover in soils. Global Biogeochem Cycles, Vol. 13(1), pp. 47-57.
23- طرح تجدید نظر طرح جنگلداری سری یک دکتر بهرام نیا. 1387. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. 481 صفحه.
24- Page, A. L., Miller, R. H., Keeney, M., 1992 b. Metods of soil analysis, Part II, Chemical and microbiological metods. 2nd Ed. Soil Science American Journal, 1159 p.
25- Holey, France, 2013. The managing soil organic matter. Department of agriculture and food. Grain Research and Development cooperation (GRDC). Australia. 110 p.
26- IPCC. 2003, Good Practice Guidance for Land Use, Land Use Change and Forestry. Published by the Institute for Global Environmental Strategies (IGES) for the IPCC. Publishers In-stitute for Global Environmental Strategies, Japan. 590 p.
27- Pothier, D. and Savard, F. 1998. Actualisation des tables de production. Gouvernement du Que´bec. Ministe`re des Ressources naturelles du Que´bec, Que´bec, QC. Publication RN98-3054. 183p.
28- Janzen, H. H., 2004. Carbon cycling in earth system: a soil science perspective. Agriculture Ecosystem Environment, Vol. 104, pp. 399-417.
29- Malhi, Y., Baldocchi, D. D., Jarvis, P. G., 1999. The carbon balance of tropical, temperate and boreal forests. Plant. Cell. Environ. 22, Vol. pp. 715-740.
30- Lal, R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management, Vol. 220, pp. 242–258.
31- Aussenac, G., 1987. Effets de l'èclaircie sur l'écophysiologie des peuplements forestiers. Schweizerische Zeitschrift fur Forstwesen, Vol. 138, pp. 685–700.
32- Vesterdal, L. M., Dalsgaard, C., Felby, K., Raulund-Rasmussen, B. Jorgensen. B, 1995. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecology and Management, Vol. 77, pp. 1-10.
33- Knoepp, D. J., Swank, T. W., 1997. Forest management effect on surface soil organic carbon and nitrogen. Soil Science Society of America Journal, Vol. 61, pp. 928-935.
34- Block, R. M. A., Van Rees, K. C. J., Knight, J. D., 2006. A review of fine root dynamics in Populus plantations. Agroforestry Systems, Vol. 76, pp. 73–84.
35- Bazzaz, F. A., Pickett, S. T. A., 1980. Physiological ecology of tropical succession: a comparative review. Annual Reviews in Ecology and Systematics, Vol. 11, pp. 287–310.
36- Wells, C. E., Eissenstat, D. M., 2001. Marked differences in survivorship among apple roots of different diameters. Ecology, Vol. 82, pp. 882-892.
37- Sundarapandian, S. M., Chandrasekaran, S., Swamy, P.S., 1996. Influence of disturbance on
38- fine root biomass and productivity in two deciduous forests of Western Ghats Tamil Nadu. Current Science, Vol. 70, pp. 242–246.
39- Jones, R.H., Mitchell, R.J., Stevens, G.N., Pecot, S.D., 2003. Controls of fine root dynamics across a gradient of gap sizes in a pine woodland. Oecologia, Vol. 134, pp. 132–143.
40- Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., Cornelissen, J., Gurevitch, J., 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, Vol. 126, pp. 543–562.
41- Johansson, M.-B., 1994. The influence of soil scarification on the turn-over rate of slash needles and nutrient release. Scandinavian Journal of Forest Research, Vol. 9, pp. 170–179.
42- Zoongiie, S., Yanhui, W., Pengtao, Y., Lihong, X., Wei, X., Hao, G., 2008. Effect of rock fragments on the percolation and evaporation of forest soil in Liupan Mountains, China, Acta Ecological Sinica, Vol. 28, pp. 6090-6098.
43- Woodwell, G. M., MacKenzie, F. T., Eds., Biotic Feedbacks in the Global Climatic System: Will the Warming Feedthe Warming? (Oxford Univ. Press, New York, 1995), pp. 3–21. Roots of different diameters. Ecology, Vol. 82, pp. 882–892.
44- Colombo, J. S., Parker, C. W., Luckai, N., Dang, Q., Cai, T., 2008. The effects of forest management on carbon storage in Ontario, s forests. CCRR-03. Ontario. Canada. Applied Research and Development, 139 p.
45- Cannel, M. G. R., Dewar, R. C., 1993. The carbon sinks provided by plantation forests and their products in Britain. Institute of terrestrial ecology, Scotland, 124 pp.