اثرات کاربرد برگی سالیسیلیک اسید بر ویژگیهای رشد چمن لولیوم تحت شرایط تنش شوری
محورهای موضوعی : مدیریت محیط زیستمسعود مقدمیار 1 , محمد کاظم سوری 2 * , الهام مطلبی 3 , محمودرضا روزبان 4
1 - کارشناس ارشد باغبانی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.
2 - استادیار گروه علوم باغبانی، دانشگاه تربیت مدرس، تهران، ایران. * (مسوول مکاتبات)
3 - استادیار گروه باغبانی، دانشگاه آزاد، واحد گرمسار، ایران.
4 - استادیار گروه باغبانی پردیس ابوریحان، دانشگاه تهران، تهران، ایران.
کلید واژه: چمن, لولیوم, شوری, پرولین, اسید سالیسیلیک,
چکیده مقاله :
چکیده زمینه و هدف: افزایش شوری آب و خاک یکی از مهم ترین چالش های پیش روی بخش کشاورزی محسوب می شود. شوری رشد و تولید گیاهان را به شکل های مختلف تحت تأثیر قرار می دهد. از طرف دیگر کاربرد موادی مانند اسید سالیسیلیک با ایفای نقش در سیستم های انتقال پیام در گیاهان می تواند باعث مقاومت در آن ها گردد. در این تحقیق اثرات محلول پاشی غلظت های مختلف اسید سالیسیلیک بر رشدونمو چمن لولیوم تحت سطوح مختلف شوری مورد بررسی قرار گرفت. روش بررسی: این آزمایش در قالب فاکتوریل برپایه طرح کاملاً تصادفی اجرا گردید. بدین منظور اسید سالیسیلیک در 4 غلظت (صفر، 100، 200، 300 میلی گرم بر لیتر) به صورت اسپری برگی و شوری خاک در 3 سطح (3-4، 6-7، 9-10 dS/m) بکار گرفته شد. عوامل رشدونمو گیاه در دو زمان اواسط و اواخر دوره رشد گیاه مورد بررسی و ارزیابی قرار گرفت. یافتهها: نتایج پژوهش حاضر نشان داد که شوری و هم چنین محلول پاشی اسید سالیسیلیک بسیاری از صفات مورفولوژیکی و فیزیولوژیکی گیاه لولیوم را تحت تأثیر قرار می دهد، به طوری که بیشترین وزن تروخشک اندام های هوایی در زمان برداشت اول مربوط به تیمارهای بالای شوری بود، درحالی که در این برداشت شاخص کلروفیل و ارتفاع گیاه با افزایش سطح شوری در گیاهان کاهش نشان داد. در برداشت دوم ارتفاع گیاه و دیگر صفات مرتبط با رشد به طور مشخصی با افزایش میزان شوری کاهش یافت. هم چنین کاربرد اسید سالیسیلیک وزن تر و خشک ریشه را در مقایسه با گیاهان شاهد افزایش داد درحالی که تأثیری بر وزن تروخشک اندام های هوایی نداشت. بحث و نتیجهگیری: طبق نتایج به دست آمده می توان بیان نمود که کاربرد اسید سالیسیلیک احتمالاً می تواند در تخفیف اثرات تنش شوری در چمن لولیوم موثر باشد.
Background and Objective: in agriculture, increase of water and soil salinity represents a main challenge. Salinity affects plant growth and productivity in various ways. On the other hand, compounds such as salicylic acid through signaling systems, can result in some resistance in plants. In this study, the effects of foliar application of salicylic acid with different concentrations on lolium growth and development were investigated under various salinity levels. Method: This study was done as a factorial based on completely randomized design. Salicylic acid was sprayed on plants in 4 concentrations of 0, 100, 200 and 300 mg/L, and soil salinity was applied at 3 levels of 3-4, 6-7 and 9-10 dS/m using NaCl. Different plant growth and development factors were evaluated at two periods of middle and end of experiment. Findings: The results of present experiment showed that salinity as well as spray of salicylic acid was effective on many morphological and physiological traits of lolium plants. At the first harvest, the highest shoot fresh and dry weight were observed in treatments with high salinity, while chlorophyll index and plant height decreased by increasing salinity levels. In the second harvest, plant height and other growth-related traits were distinctly decreased by increasing salinity levels. Spray of salicylic acid resulted in higher root fresh and dry weight as compared to control plants, while it showed no effects on shoot fresh and dry weight. Discussion and Conclusion: It was concluded that application of salicylic acid could reduce salinity effects on lolium plants.
1- Tirani, M., and Kalantary, K.H. 2007. Evaluation salycilic acid effects on some growth and biochemical parameters of rape under water stress. Biology J. 65: 28-55 (In Persian).
2- Adavi, Z., Mobli, M. and Razmjo, K.H. 2006. Effects of salinity level of irrigation water on African lawn cultivars (Cynodondactylon) under soil salinity in Esfahan. Natural Resources and Agricultural Technology. 10: 179-190 (In Persian).
3- Souri, M.K. 2016. Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture, 1: 118-123.
4- Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 463-739.
5- Senaratna, T., Touchell, D., Bunn, E., Dixon, K. 2000. Acetyl salicylic acid (Asperin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Reg. 30: 157-161.
6- Shahba, Z., Baghizadeh, A., Vakili, S. M. A., Yazdanpanah, A., and Yosefi, M. 2010. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). Journal of Biophysics and Structural Biology, 2(3): 35-41.
7- Sakhabutdinova, A., Fatkhutdinova, D., Bezrukova, M. and Shakirova, F.M. 2003. Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol, 21: 314-319.
8- Asfini Farahani, M., Paknejad, F., Bakhtiari Moghadam, M., Alavi, S. and Hasibi, A. 2012. Effects of different amounts and methods of salycilic acid application on yield and yield components of Cumin. Agronomy and Plant Breeding J., 8: 69-77. (In Persian).
9- Bideshki, A., Arvin, M.J. and Darini, M. 2013. Interactive effects of Indole-3-butyric acid (IBA) and salicylic acid (SA) on growth parameters, bulb yield and allicin contents of garlic (Allium sativum) under drought stress in field. Intern. J. Agron. Plant Product., 4(2): 271-279.
10- Habibi, Gh. 2013. Effect of salycilic acid on antioxidant systems of some grape cultivars after cold treatment. New Cellular Molecul. Biotechnol. J. 3(9): 101-105 (In Persian).
11- Metwally, A., Finkemeier, I., Georgi, M., and Dietz, K. J. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1): 272-281.
12- Yalpani, N., Silverman, P., Wilson, T. M., Kleier, D. A., and Raskin, I. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. The Plant Cell, 3(8): 809-818.
13- Medina, J. H., Gagnon, H., Piché, Y., Ocampo, J. A., Garcı́, J. M., and Vierheilig, H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 164(6): 993-998.
14- Hussain, M., Malik, M. A., Farooq, M., Khan, M. B., Akram, M., & Saleem, M. F. (2009). Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. Journal of Agronomy and Crop Science, 195(2): 98-109.
15- Parida, A. K. and Das, A. B. 2005. Salt tolerance and salinity effects on plants: a review. India Ecotoxicology and Environmental Safety. 60: 324-177
16- Tabatabaei, S. J. 2006. Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Scientia Horticulturae, 108: 432-438
17- Marschner, H. 1995. Mineral nutrition of higher plant. Academic, London.
18- Prasad, M. N. 1996. Plant ecophysiology. Johnwiley and Sons, Inc, New York 542, PP 173-206.
19- Chaudhuri, M. A. 1997. Effect of short term NaCl Stress on water relations and gas exchanges of two jute species .Biol. Plant. 40: 373-380.
20- Cuartero, J., and Fernandez-Munoz, R. 1999. Tomato and salinity. Scientia Horticulturae, 78: 83-125.
21- Gadallah, M. A., 1999. Effect of proline and glycinebetaine on Vicia faba response to salt stress, Biol. Plant. 42: 249-257.
22- Lee, D. H., Kim, Y. S. and Lee, C. B. 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiol. 158: 737-745.
23- Vasyukova, N. I., and Ozeretskovskaya, O. L. 2007. Induced plant resistance and salicylic acid: a review. Applied Biochemistry and Microbiology, 43(4): 367-373.
24- Bartoz, G. 1997. Oxidative stress in plants. Acta Physiol. Planta, 19(1): 47-64 .
25- Raskin, I. 1995. Salicylic Acid, in: Plant Hormones. Physiology, Biochemistery and Molecular Biology 2nd Edition.J., Davies ed., Kluwer Acad. Publ. Dordrech, The Netherlands.
26- Borsani, O., Valpuesta, V., and Botella, M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant physiology, 126(3): 1024-1030.
27- Shakirova, F.M., Sakhabutdinova, A.R., Bozrutkova, M.V., Fatkhutdinova, R.A., Fatkhutdinova, D.R. 2003. Changes in the hormonal status of wheat seedlings induced by Salicylic Acid and salinity. Plant Sci., 164: 317-322.
28- Tari, I., Csiszar, J., Szalai, G., Horvath, F., Pecsvaradi, A., Kiss, G., Szepsi, A., Szabo, M., Erdei, L. 2002. Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biologica, 46 (3-4): 55-56.
29- Glass, A.D.M. 1974. Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials. Plant Physiol., 54:855-858
30- Larque, S. A. 1978. The anti transpirant effect of acetyl salicylic acid on phaseolus vulgaris. Physiol. Plant., 43: 126-128
31- Rakwal, R., Agraval, V. P. 2001. Jasmonate, protein phophatase 2A inhibitors and kinetin up – regulate of PR5 expression in cut- responsive rice. J. Plant Physiol., 158: 1357-1362.
32- Dat, J. F., Christine, H. F., Scott, I. M. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol., 118 (4): 1455-1461.
33- Kang, H. M., and Saltveit, M. E. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected salicylic acid. Physiol. Plant. 115: 571-576.
34- Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., Kanna, M., Ioki, M., Kanada, H., Saji, H. 2005. Salicylic Acid and accumulation under o3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol., 46: 1062-1072
35- Yalpani, N., Leon, J., Lawton, M. A., Rackin, I. 1992. Pathway of salicylic acid biosynthesis in healthy and virus–inoculated tobacco. Plant Physiol., 103: 315-321.
36- Yang, Z.M., Wang, J., Wang, S. H., Xu, L. 2003. Salicylic Acid – induced aluminum tolerance by modulation of citrate efflux form roots of Cassia tora L. Planta, 17: 168-174.
37- Ahmadi, M., and Souri, M.K. (2018). Growth and mineral elements of coriander (Corianderum sativum L.) plants under mild salinity with different salts. Acta Physiologia Plantarum, 40: 94-99.
1- Tirani, M., and Kalantary, K.H. 2007. Evaluation salycilic acid effects on some growth and biochemical parameters of rape under water stress. Biology J. 65: 28-55 (In Persian).
2- Adavi, Z., Mobli, M. and Razmjo, K.H. 2006. Effects of salinity level of irrigation water on African lawn cultivars (Cynodondactylon) under soil salinity in Esfahan. Natural Resources and Agricultural Technology. 10: 179-190 (In Persian).
3- Souri, M.K. 2016. Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture, 1: 118-123.
4- Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 463-739.
5- Senaratna, T., Touchell, D., Bunn, E., Dixon, K. 2000. Acetyl salicylic acid (Asperin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Reg. 30: 157-161.
6- Shahba, Z., Baghizadeh, A., Vakili, S. M. A., Yazdanpanah, A., and Yosefi, M. 2010. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). Journal of Biophysics and Structural Biology, 2(3): 35-41.
7- Sakhabutdinova, A., Fatkhutdinova, D., Bezrukova, M. and Shakirova, F.M. 2003. Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol, 21: 314-319.
8- Asfini Farahani, M., Paknejad, F., Bakhtiari Moghadam, M., Alavi, S. and Hasibi, A. 2012. Effects of different amounts and methods of salycilic acid application on yield and yield components of Cumin. Agronomy and Plant Breeding J., 8: 69-77. (In Persian).
9- Bideshki, A., Arvin, M.J. and Darini, M. 2013. Interactive effects of Indole-3-butyric acid (IBA) and salicylic acid (SA) on growth parameters, bulb yield and allicin contents of garlic (Allium sativum) under drought stress in field. Intern. J. Agron. Plant Product., 4(2): 271-279.
10- Habibi, Gh. 2013. Effect of salycilic acid on antioxidant systems of some grape cultivars after cold treatment. New Cellular Molecul. Biotechnol. J. 3(9): 101-105 (In Persian).
11- Metwally, A., Finkemeier, I., Georgi, M., and Dietz, K. J. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1): 272-281.
12- Yalpani, N., Silverman, P., Wilson, T. M., Kleier, D. A., and Raskin, I. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. The Plant Cell, 3(8): 809-818.
13- Medina, J. H., Gagnon, H., Piché, Y., Ocampo, J. A., Garcı́, J. M., and Vierheilig, H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 164(6): 993-998.
14- Hussain, M., Malik, M. A., Farooq, M., Khan, M. B., Akram, M., & Saleem, M. F. (2009). Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. Journal of Agronomy and Crop Science, 195(2): 98-109.
15- Parida, A. K. and Das, A. B. 2005. Salt tolerance and salinity effects on plants: a review. India Ecotoxicology and Environmental Safety. 60: 324-177
16- Tabatabaei, S. J. 2006. Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Scientia Horticulturae, 108: 432-438
17- Marschner, H. 1995. Mineral nutrition of higher plant. Academic, London.
18- Prasad, M. N. 1996. Plant ecophysiology. Johnwiley and Sons, Inc, New York 542, PP 173-206.
19- Chaudhuri, M. A. 1997. Effect of short term NaCl Stress on water relations and gas exchanges of two jute species .Biol. Plant. 40: 373-380.
20- Cuartero, J., and Fernandez-Munoz, R. 1999. Tomato and salinity. Scientia Horticulturae, 78: 83-125.
21- Gadallah, M. A., 1999. Effect of proline and glycinebetaine on Vicia faba response to salt stress, Biol. Plant. 42: 249-257.
22- Lee, D. H., Kim, Y. S. and Lee, C. B. 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiol. 158: 737-745.
23- Vasyukova, N. I., and Ozeretskovskaya, O. L. 2007. Induced plant resistance and salicylic acid: a review. Applied Biochemistry and Microbiology, 43(4): 367-373.
24- Bartoz, G. 1997. Oxidative stress in plants. Acta Physiol. Planta, 19(1): 47-64 .
25- Raskin, I. 1995. Salicylic Acid, in: Plant Hormones. Physiology, Biochemistery and Molecular Biology 2nd Edition.J., Davies ed., Kluwer Acad. Publ. Dordrech, The Netherlands.
26- Borsani, O., Valpuesta, V., and Botella, M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant physiology, 126(3): 1024-1030.
27- Shakirova, F.M., Sakhabutdinova, A.R., Bozrutkova, M.V., Fatkhutdinova, R.A., Fatkhutdinova, D.R. 2003. Changes in the hormonal status of wheat seedlings induced by Salicylic Acid and salinity. Plant Sci., 164: 317-322.
28- Tari, I., Csiszar, J., Szalai, G., Horvath, F., Pecsvaradi, A., Kiss, G., Szepsi, A., Szabo, M., Erdei, L. 2002. Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biologica, 46 (3-4): 55-56.
29- Glass, A.D.M. 1974. Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials. Plant Physiol., 54:855-858
30- Larque, S. A. 1978. The anti transpirant effect of acetyl salicylic acid on phaseolus vulgaris. Physiol. Plant., 43: 126-128
31- Rakwal, R., Agraval, V. P. 2001. Jasmonate, protein phophatase 2A inhibitors and kinetin up – regulate of PR5 expression in cut- responsive rice. J. Plant Physiol., 158: 1357-1362.
32- Dat, J. F., Christine, H. F., Scott, I. M. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol., 118 (4): 1455-1461.
33- Kang, H. M., and Saltveit, M. E. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected salicylic acid. Physiol. Plant. 115: 571-576.
34- Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., Kanna, M., Ioki, M., Kanada, H., Saji, H. 2005. Salicylic Acid and accumulation under o3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol., 46: 1062-1072
35- Yalpani, N., Leon, J., Lawton, M. A., Rackin, I. 1992. Pathway of salicylic acid biosynthesis in healthy and virus–inoculated tobacco. Plant Physiol., 103: 315-321.
36- Yang, Z.M., Wang, J., Wang, S. H., Xu, L. 2003. Salicylic Acid – induced aluminum tolerance by modulation of citrate efflux form roots of Cassia tora L. Planta, 17: 168-174.
37- Ahmadi, M., and Souri, M.K. (2018). Growth and mineral elements of coriander (Corianderum sativum L.) plants under mild salinity with different salts. Acta Physiologia Plantarum, 40: 94-99.