رویکردی در طراحی محل دفن بهداشتی جهت تصفیه و استفاده از گازهای ناشی از تجزیه در شبکه گاز شهری
محورهای موضوعی : مدیریت محیط زیستمحمد جواد ذوقی 1 * , محمد رضا دوستی 2
1 - استادیار گروه عمران، دانشکده مهندسی، دانشگاه بیرجند. *(مسوول مکاتبات)
2 - دانشیار گروه عمران، دانشکده مهندسی، دانشگاه بیرجند
کلید واژه: محل دفن بهداشتی, کاهش هزینه, پالایش بیوگاز, جداسازی دی اکسید کربن,
چکیده مقاله :
زمینه و هدف: ترکیبات اصلی بیوگاز خروجی از مراکز دفن زباله شامل دی اکسید کربن و متان است، که از تجزیه بی هوازی زباله ناشی می شود. میزان اهمیت جلوگیری از انتشار گاز مراکز دفن زباله (LFG) با توجه به پتانسیل تاثیر در گرمایش جهانی (GWP) گاز متان، که 21 برابر بیشتر از تاثیر CO2 در گرمایش جهانی است، مشهود است. در این مقاله روشی جدید در طراحی مراکز دفن زباله، برای جلوگیری از انتشار گاز دفنگاه زباله به محیط و جلوگیری از ورود هوا به دفنگاه زباله معرفی می گردد. روش بررسی: روش ارائه شده در این مقاله، با استفاده از فشار منفی بالا در استخراج و ایجاد تغییر در لایه بالایی پوشش مراکز دفن زباله ، که در نفوذ هوا تاثیر مهمی دارد، از نفوذ هوا به داخل مراکز دفن زباله جلوگیری می کند. همچنین در این مقاله برای بررسی جداسازی CO2 از گاز مرکز دفن زباله به وسیله فرآیند جذب در محلول منو اتانل آمین و تزریق آن بر لایه بالایی پوشش مراکز دفن زباله، از نرم افزار Aspen Hysys استفاده شد. یافتهها: با استفاده از سیستم جدید مقدار هوای ورودی به محل دپوی زباله کاهش پیدا کرده، و در نتیجه پالایش گاز مراکز دفن زباله با هزینه کم و کارایی بالا انجام می گردد. بحث و نتیجهگیری: سیستم جدید قابلیت اجراء بر روی مراکز دفن زباله معمولی را دارد. با استفاده از این طرح در تعداد بیشتری از مراکز دفن زباله، پالایش و بهره برداری از بیوگاز صرفه اقتصادی خواهد داشت، و افزایش در بهره برداری از بیوگاز سبب استفاده بیشتر از منابع انرژی تجدید پذیر و کاهش گازهای گلخانه ای می شود.
Background and Objective: The main components of landfill biogas are methane and carbon dioxide, both of which are greenhouse gases. Methane is a greenhouse gas with global warming potential of 21 times greater compared to CO2. In this paper, a new method is proposed for landfilling to reduce landfill gas emissions and to prevent entry of air into the landfill. Method: This paper presents a new landfill design and system for air ingress prevention and landfill gas containment. In addition, in this paper Aspen Hysyssoftware was used for the dynamic simulation of separation of CO2 from landfill gas by adsorption process in the ethanolamine solution. Findings: The new system proffers more control over the biogas extraction and processes of anaerobic digestion than conventional landfills. In the new system, the landfill gas purification process becomes cheaper due to reduction of air ingress. Conclusion: The new system can be applied on tipycal landfills. Using this new system, biogas purification and exploitation will become economical in more landfills, and the increased use of biogas will result in greater use of renewable energy sources and reduction of greenhouse gas emissions.
- Butt, T.E., Gouda, H.M., Baloch, M.I., Paul, P., Javadi, A.A. and Alam, A., 2014. Literature review of baseline study for risk analysis-The landfill leachate case. Environment international, Vol. 63, pp.149-162.
- Yuan, H. and Shen, L., 2011. Trend of the research on construction and demolition waste management. Waste management, Vol. 31, pp.670-679.
- Houghton, J.T., Callander, B.A. and Varney, S.K. eds., 1992. Climate change 1992. Cambridge University Press.
- Nikiema, J., Brzezinski, R. and Heitz, M., 2007. Elimination of methane generated from landfills by biofiltration: a review. Reviews in Environmental Science and Bio/Technology, Vol. 6, pp.261-284.
- Knaebel, K.S. and Reinhold, H.E., 2003. Landfill gas: from rubbish to resource. Adsorption, Vol. 9, pp.87-94.
- Chakma, S. and Mathur, S., 2017. Modelling gas generation for landfill. Environmental technology, Vol. 38, pp.1435-1442.
- Stevens, R, Nichols, P, Martin, M., 2010. System and method of gas dispersal and collection for preventing gas contamination. Unites States Patent No. 6065901.
- Shih, T.M., Zheng, Y., Arie, M. and Zheng, J.C., 2013. Literature Survey of Numerical Heat Transfer (2010–2011). Numerical Heat Transfer, Part A: Applications, Vol. pp.435-525.
- Popov, V., Power, H. and Baldasano, J.M., 1998. BEM solution for design of trenches in multilayered landfills. Journal of environmental engineering, Vol. 124, pp.59-66.
- Popov V, Power H., 1999. Landfill emission of gases into the atmosphere-boundary element analysis. Southampton: Computational Mechanics Publications/WIT Press.
- Popov V., Power H., 1999. DRM-MD approach for the numerical solution of gas flow in porous media, with application to landfill. Engng Anal Boundary Elements, Vol, 23, pp.175-88.
- Popov, V. and Power, H., 2010. Numerical analysis of efficiency of landfill venting trenches. Journal of environmental engineering, Vol. 126, pp.32-38.
- Mofarahi, M., Khojasteh, Y., Khaledi, H. and Farahnak, A., 2008. Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy, Vol. 33, pp.1311-1319.
- Chu, F., Yang, L., Du, X. and Yang, Y., 2016. CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns. Energy, Vol. 109, pp.495-505.
- Yang, X., Rees, R.J., Conway, W., Puxty, G., Yang, Q. and Winkler, D.A., 2017. Computational modeling and simulation of CO2 capture by aqueous amines. Chemical reviews, Vol. 117, pp.9524-9593.
- Alie, C., Backham, L., Croiset, E. and Douglas, P.L., 2005. Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energy conversion and management, Vol. 46, pp.475-487.
- Wang, Y., Zhao, L., Otto, A., Robinius, M. and Stolten, D., 2017. A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, Vol. 114, pp.650-665.
- HYSYS, A., 2007. Tutorials and Applications. Aspen Technology. Inc., Burlington, Massachusetts.
- Hong, J., Chen, Y., Wang, M., Ye, L., Qi, C., Yuan, H., Zheng, T. and Li, X., 2017. Intensification of municipal solid waste disposal in China. Renewable and Sustainable Energy Reviews, Vol. 69, pp.168-176.
- Krautwurst, S., Gerilowski, K., Jonsson, H.H., Thompson, D.R., Kolyer, R.W., Iraci, L.T., Thorpe, A.K., Horstjann, M., Eastwood, M., Leifer, I. and Vigil, S.A., 2017. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements. Atmospheric Measurement Techniques, Vol. 10, p.3429.
_||_
- Butt, T.E., Gouda, H.M., Baloch, M.I., Paul, P., Javadi, A.A. and Alam, A., 2014. Literature review of baseline study for risk analysis-The landfill leachate case. Environment international, Vol. 63, pp.149-162.
- Yuan, H. and Shen, L., 2011. Trend of the research on construction and demolition waste management. Waste management, Vol. 31, pp.670-679.
- Houghton, J.T., Callander, B.A. and Varney, S.K. eds., 1992. Climate change 1992. Cambridge University Press.
- Nikiema, J., Brzezinski, R. and Heitz, M., 2007. Elimination of methane generated from landfills by biofiltration: a review. Reviews in Environmental Science and Bio/Technology, Vol. 6, pp.261-284.
- Knaebel, K.S. and Reinhold, H.E., 2003. Landfill gas: from rubbish to resource. Adsorption, Vol. 9, pp.87-94.
- Chakma, S. and Mathur, S., 2017. Modelling gas generation for landfill. Environmental technology, Vol. 38, pp.1435-1442.
- Stevens, R, Nichols, P, Martin, M., 2010. System and method of gas dispersal and collection for preventing gas contamination. Unites States Patent No. 6065901.
- Shih, T.M., Zheng, Y., Arie, M. and Zheng, J.C., 2013. Literature Survey of Numerical Heat Transfer (2010–2011). Numerical Heat Transfer, Part A: Applications, Vol. pp.435-525.
- Popov, V., Power, H. and Baldasano, J.M., 1998. BEM solution for design of trenches in multilayered landfills. Journal of environmental engineering, Vol. 124, pp.59-66.
- Popov V, Power H., 1999. Landfill emission of gases into the atmosphere-boundary element analysis. Southampton: Computational Mechanics Publications/WIT Press.
- Popov V., Power H., 1999. DRM-MD approach for the numerical solution of gas flow in porous media, with application to landfill. Engng Anal Boundary Elements, Vol, 23, pp.175-88.
- Popov, V. and Power, H., 2010. Numerical analysis of efficiency of landfill venting trenches. Journal of environmental engineering, Vol. 126, pp.32-38.
- Mofarahi, M., Khojasteh, Y., Khaledi, H. and Farahnak, A., 2008. Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy, Vol. 33, pp.1311-1319.
- Chu, F., Yang, L., Du, X. and Yang, Y., 2016. CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns. Energy, Vol. 109, pp.495-505.
- Yang, X., Rees, R.J., Conway, W., Puxty, G., Yang, Q. and Winkler, D.A., 2017. Computational modeling and simulation of CO2 capture by aqueous amines. Chemical reviews, Vol. 117, pp.9524-9593.
- Alie, C., Backham, L., Croiset, E. and Douglas, P.L., 2005. Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energy conversion and management, Vol. 46, pp.475-487.
- Wang, Y., Zhao, L., Otto, A., Robinius, M. and Stolten, D., 2017. A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, Vol. 114, pp.650-665.
- HYSYS, A., 2007. Tutorials and Applications. Aspen Technology. Inc., Burlington, Massachusetts.
- Hong, J., Chen, Y., Wang, M., Ye, L., Qi, C., Yuan, H., Zheng, T. and Li, X., 2017. Intensification of municipal solid waste disposal in China. Renewable and Sustainable Energy Reviews, Vol. 69, pp.168-176.
- Krautwurst, S., Gerilowski, K., Jonsson, H.H., Thompson, D.R., Kolyer, R.W., Iraci, L.T., Thorpe, A.K., Horstjann, M., Eastwood, M., Leifer, I. and Vigil, S.A., 2017. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements. Atmospheric Measurement Techniques, Vol. 10, p.3429.