رویکرد جدید زیست محیطی در تصفیه آب و پساب صنعتی با استفاده از سامانه ترکیبی بیولوژیکی، فیلتراسیون جذب سطحی–تبادل یونی (مطالعه موردی: نیروگاه نیشابور)
محورهای موضوعی : مدیریت محیط زیستبابک مهرآوران 1 * , حسین انصاری 2
1 - مسوول مکاتبات): دانشجوی دکتری مهندسی آب- سازه های آبی، پردیس بین الملل دانشگاه فردوسی مشهد، مشهد، ایران.
2 - دانشیار گروه مهندسی آب دانشگاه فردوسی مشهد، مشهد، ایران.
کلید واژه: : بسترشن سیلیسی, فیلتر کربن اکتیو, فیلتر رزینی, سامانه ترکیبی,
چکیده مقاله :
زمینه و هدف: سامانه ترکیبی بیولوژیک، جذب سطحی، تبادل یونی یک فرآیند جدید در عملیات تصفیه آب و پساب بوده که در آن با استفاده از فرآیند جذب سطحی در بسترهای شن سیلیسی و کربن اکتیو و نیز فرآیند تبادل یونی در بستررزینی (رزین های ژل تراوا) آلاینده های موجود در پساب ها به گونه ای کاهش یافته که قابلیت استفاده مجدد را داشته باشند. در این تحقیق عملکرد سیستم یاد شده در تصفیه پساب نیروگاه نیشابور مورد بررسی قرارگرفته است. روش بررسی: در این تحقیق بررسی تاثیر شارهای جریانی مختلف برروی درصد حذفTS وCOD در فیلترسیلیسی با نسبت های مختلف از شن سیلیسی ریز و درشت و نیز مقایسه درصد حذف یون های سدیم وکلسیم در شارهای مختلف بین رزین های شاخص(ژل تراوا) و معمولی در تصفیه پساب فاضلاب بهداشتی و پساب کلین درین نیروگاه نیشابور انجام پذیرفت. یافتهها: میزان یون سدیم از 1250میلی گرم در لیتر به 9/1 کاهش یافته و میزان COD از411 میلی گرم در لیتر به صفر کاهش یافته است. میزان کنداکتیویته از 2180 میکروزیمنس به 560 میکروزیمنس کاهش یافته است. نتایج آزمایش ها بیانگر آن می باشد که این سیستم قابلیت حذف یون سدیم حتی تا 6/99 % را نیز دارد. بحث و نتیجهگیری: استفاده از فن آوری بیولوژیک، جذب سطحی- تبادل یونی دارای توانایی بالایی برای حجم وسیعی از عملیات تصفیه پساب بوده و علاوه برآن دارای ارزش اقتصادی بالایی نیز می باشد، در نیروگاه ها با استفاده از این سامانه ترکیبی می توان پساب کلین درین (پساب ناشی از درین بویلرها و بلودان بویلرها ) را با خلوص بالائی به چرخه آب مصرفی نیروگاه وارد کرد.
Abstract Background and Objective: The hybrid biological, adsorption-ion exchange system is a newly developed process for water and wastewater treatment operations, in which the adsorption process in active carbon and silica sand beds and the ion-exchange process in resin beds (index resins) are used in combination in order to reduce contamination to acceptable levels suitable for reuse. In this study, performance of the mentioned system in wastewater treatment in Neyshabour Power Plant has been investigated. Method: In this study, the effect of various flow fluxes on TS and COD removal via silica filter at various ratios of silica sand (coarse and fine grades), as well as comparison of sodium and calcium ions removal via ordinary and index resins at different fluxes for sanitary and clean drain wastewater treatment in Neyshabour Power Plant have been studied. Findings: There was a decline in sodium ion level from 1250 mg/lit to 1.9 mg/lit and in COD level from 411 mg/lit to zero. Also, conductivity was reduced from 2180µS/cm to 560µS/cm. The system demonstrated the capability for the removal of sodium ion up to 99.6%. Conclusion: The biological, adsorption-ion exchange technology has a high potential for processing a large volume of wastewater as well as generating a high economic value. This hybrid system can be used to return the clean drain wastewater (wastewater from drain boilers and blow down boilers) with high purity to water cycle in power plants.
1- ابریشم چی، احمد و همکاران« مهندسی آب و فاضلاب»، چاپ سوم، جلد اول، شرکت مهندسی متکاف و ادی، مرکز نشر دانشگاهی، 1384، جلد اول.
2- قاسمی، ا، «ارزیابی کیفیت پساب از تصفیه خانه های فاضلاب برای استفاده در کشاورزی»، پایاننامه کارشناسی ارشد، دانشگاه فردوسی مشهد، 1389.
3- http://www.farabord.com.
4- Ping Yu*, Yunbai Luo. (2002)."Novel water treatment process-combined cationic ion-exchange bed and degasifer in a three-phase fluidized bed " ,Desalination,pp.145-161
5- Water Treat ment plant WTP-sand filter Media Iran power Development company (2010).
6- نتایج آزمایشات آزمایشگاه آب نیروگاه نیشابور، 1393.
7- Boyer, T.H., singer,P.C.,2006. apilot – scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anion. Water research 40(15),pp.2865-2876.
8- P . Yu and Y .Luo, Ion Exchange and Adsorption, 16(2000) 337-43
9- http:// www.lewatit.bayer.de(visited 12 january2013).
10- S.B. Watson, j. Lawrence,. Drinking water quality and sustainability. Water Qual. Res. J. Can.38(2003),pp. 3-13.
11- (Visited 10 Dec 2013) http:// www.bayer.com.
12- شجاع الساداتی، سیدعباس ((بیوتکنولوژی صنعتی)) تهران ،دانشگاه تربیت مدرس مرکز نشر آثارعلمی، 1386.
13- Jarvis, p., Mergen, M., Banks, j., Mcintosh, B., parsons, S.A., Jefferson, b., 2008.pilot scale comparison of enhanced coagulation with magnetic resin plus coagulation systems.
14- Stanbury, P.F.; Whitaker , A & Hall, S.j., (2007)"priciples of Fermentation Technology" 2 fd., Aditya Books (p) Ltd.,new.
15- Laboratoire d'Hydrobiologie, d'Ecotoxicologie et, d'Assainissment University Cadi Ayyad, Faculte des Sciences Semlalia,Boulevard prince Moulay-Abdelah "Removal of organic pollutants and nutrients from olive Mill wastewater by a sand filter"Dsalination 90(2009),pp. 2771-2779.
16- اسناد و مدارک دفترفنی نیروگاه نیشابور،1393.
17- Stumm, W., Morgan, j.j., (1996). Aquatic Chemistry. John Wiley Sons, Inc., New York [18] singer, p.G., Bilyk, K., (2002). Enhanced coagulation using a magnetic ion exchange resin. Water Research 36, pp. 4009-4022.