مقایسه روش فراکتال و کریجینگ جهت تخمین اثر مقیاس طولی بر ضریب انتشارپذیری عناصر ناپایدار در خاک
محورهای موضوعی :
مدیریت محیط زیست
یاسر حسینی
1
,
بهروز مهدی نژادیانی
2
1 - دانشیار، گروه آبیاری دانشکده کشاورزی و منابع طبیعی مغان، دانشگاه محقق اردبیلی، مغان، ایران.*(مسئول مکاتبات)
2 - استادیار، گروه مهندسی آب دانشگاه کردستان، سنندج، ایران
تاریخ دریافت : 1393/07/01
تاریخ پذیرش : 1394/08/13
تاریخ انتشار : 1396/04/01
کلید واژه:
انتشار پذیری,
انتقال املاح,
ستون عمودی,
نظریه فراکتال ژئومتری,
زمین آمار,
چکیده مقاله :
زمینه و هدف: مهم ترین پارامتر انتقال آلودگی و املاح در خاک، مقدار انتشار هیـدرودینامیکی امـلاح در خـاک است که به فاصله انتقال آلاینده ارتباط دارد. از آن جا که تئوری هندسه فراکتال و زمین آمار قادر به توضیح و پیش بینی پدیده هایی هستند که به فاصله ارتباط دارند، لذا در این تحقیق از روش فراکتال و زمین آمار برای تعیین انتشارپذیری استفاده شد.
روش بررسی: آزمایش انتقال املاح در 16 نقطه از ستون عمودی خاک به قطر 10 سانتی متر و طول 1 متر انجام گردید و منحنی های رخنه حاصل در اعماق6، 12، 18، 24، 30، 36، 42، 48 ،54، 60، 66، 72، 78، 84 ،90و 96 سانتی متر از کف مدل استخراج گردید. سپس معادله انتقال- انتشار با توجه به فرضیات فراکتالی در رابطه با ضریب انتشارپذیری به منحنی های رخنه حاصل برازش داده شد.
یافته ها: با توجه به آزمایشات جذب سطحی فسفر در خاک، هم دمای جذب خطی فسفر از بهترین برازش در غلظت های 4-12-25-50-70 میلی گرم در لیتر فسفر برخوردار بود. نتایج نشان داد که با انجام آزمون مقایسه میانگین ها، هر دو روش در سطح اعتماد یک درصد قادر به پیش بینی تغییرات و افزایش ضریب انتشارپذیری در ستون خاک می باشند، ولی روش فراکتال مقادیر را با دقت بیشتری برآورد نموده است.
بحث و نتیجه گیری: در تحقیق حاضر انتشار پذیری در طول نمونه از رابطه توانی پیروی نمود و ضـرایب رگرسیـونی مـدل فراکتال و زمین آمار در پیش بینی مقادیر انتشارپذیری به ترتیب 97/0و 84/0 به دست آمد.
چکیده انگلیسی:
Background and Objectives: Hydrodynamic dispersion rate of solutes in soil is considered as the major parameter for pollution and solutes transport in soil, which is related to pollutant transport distance. As fractal geometry theory and geostatistical theory are capable of explaining and predicting the distance-related phenomena, this research used fractal geometry and geostatistics method for determining dispersivity.
Methods: Solutes transport experiment was carried out at 16 points of soil vertical column with a diameter of 10 centimeters and a length of 1 meter and BTCs were extracted at the depth of 6, 12, 18, 24, 30, 36, 42, 54, 48, 60, 66, 72, 78, 90, 84, 96 centimeters from the model bottom. CDE equation was then fitted with the BTCs with respect to the fractal assumptions on dispersivity coefficients.
Findings: With respect to phosphorus absorption experiments in soil, phosphorus adsorption isotherm had the best fitting at 4, 12, 25, 50, 70 mg/l of phosphorus concentrations. The results showed that both methods are capable of predicting changes and increase of dispersivity coefficient in soil column after performing a mean-comparison test. However, fractal geometry method estimated values at a higher accuracy.
Discussion and Conclusion: Result showed that, dispersivity along the sample followed the exponential relation. The regression coefficients of the fractal and geostatistical models in predicting dispersivity values were 0.97 and 0.84, respectively.
منابع و مأخذ:
- Wirenga, P.J., 2004. Solute transport in porous media. Scale Effect. Unrestricted in HTML. Vol. 28,pp.350-358
- Pickens, J. F., and Grisak, G. E., 1981. Modeling of scale-dependent dispersion in
hydrogeologic systems. Water Resour. Res. Vol. 17(6), pp. 1701-1711.
توللی. ح و سمنانی. ا، 1381، روش های تجزیه خاک ها، گیاهان ، آب ها و کودها، انتشارات دانشگاه شهید چمران اهواز.
Oakes, D.B., Edworthy, D.J., 1977. Field measurements of dispersion coefficients in the nited Kingdom,in Groundwater Quality, Measurment,Peridiction and Protection, Water Research Center, Reading, England, Vol. 47, pp. 327-340
Gime´nez, D., Rawls, W., Perfect, E., Pachepsky, Ya., 1998. Fractal models for predicting soil hydraulic properties: A review, Eng, Geol, Vol. 48, pp.161–167
Ayatamuno, J. M., 1998. Contaminant transport and immobilization in stratified sands, PhD-Thesis, University of Birmingham, UK. p.234
Huang, G., Huang, Q., Zhan, H., 2006. Evidence of one-dimensional scale-dependent fractional advection dispersion. Journal of contaminant hydrology Vol. 85, pp.53-71.
Martinez, F., Pachepsky, Y.A., Rawls, W.J., 2009. Modeling Solute Transport in Soil Columns Using Advective-Dispersive Equation with Fractional spatial derivatives.Advances in Engineering Software. Vol. 41,.pp.4-8
Kirda, C., Nielson, D. R., Biggar, J. W., 1973. Simultaneous transport of chloride and water during infiltration, Soil Science. Vol. 37, pp.39-345
Al-tabbaa, A., ayotanomo, j, m., Martin, R, J., 2000. One dimentional solute transport in stratified sands at short travel distances. Journal of Hazardous Materials, Vol. 73, pp.1-15
Pachepsky, Ya., Giménez, A. D., Rawls, W, J., 2000. Bibliography on applications of fractals in soil science, Fractals in Soil Science. Vol. 27, pp. 273-295
Wang, H., Persaud, N., Zhou, X., 2006. Specifying Scale – dependent Dispersivity in Numerical Solutions of the Convection-Dispersion Equation.Soil Science. Vol. 7o, pp.1843-1850.
Darby, A., Abdel-Nasser, G., 2006. Nitrate leaching through unsaturated soil columns: comparison between numerical and analytical solutions. J. Applied Sci., Vol. 6, pp. 735-743.
Chou, P. Y., Wyseure, G., 2009. Hydrodynamic dispersion characteristics of lateral inflow into a river tested by a laboratory model. Hydrol. Earth Syst.Sci. Vol. 13, pp.217-228
Chamkha, A. J., 2007. Numerical Modeling of Contaminant Transport with. Spatially-Dependent Dispersion and Non-Linear. Chemical Reaction. Nonlinear Analysis: Modelling and control Vol. 12(3), pp. 329-343
.عباسی. فریبرز، 1386، فیزیک خاک پیشرفته، انتشارات دانشگاه تهران، ص 241.
Mandelbrot, B.B., 1967. How long is the coastline of Great Britian? Statistical selfsimilarity and fractional dimension، Science Vol. 155,pp. 636-638.
شیروانی. م و شریعتمداری. ح، 1380، استفاده از همدماهای جذب در تعیین شاخص های ظرفیت بافری و نیاز استاندارد فسفر برخی خاک های آهکی استان اصفهان، پژوهشکارشناسی ارشد، دانشگاه صنعتی اصفهان.
Timsina, J., Connor, D.J., 2001.Productivity and management of rice-wheat cropping systems: Issues and challenges.Field crop Res، Vol. 69, pp.93-132
Parker, J.C., Abrecht, K.A., 1987. Sample volume effect of solute transport predictions,Water Resource .Res, Vol. 23, pp. 2293-2310
Porro, I., Wierenga, P.J., Hills, R. G., 1993. Solute transport through large uniform and layered soil columns، Water Resour، Res، Vol. 29, pp.1321–1330.
Neuman, S.P، 1990. Universal scaling of hydraulic conductivities and dispersivities in geologic media، Water Resource، Res، Vol. 26,pp.1749–1758.
Yates, S.R ,2000. An analytical solution for one- dimensional transport in haterogeneous porous media ،Water Resouer ، Vol. 23,pp.31-2338
Zhou, L.H, Selim, M, 2001.Solte Transport in Layered Soils: Nonlinear and Kinetic Reactivity.Soil Science Vol. 65,pp.1056-1064
Rajanayaka, C , Samarasinghe S, 2002. A Comparative Study of Parameter Estimation in Hydrology Modelling: Artificial Neural Networks and Curve Fitting Approaches, Centre for Advanced Computational Solutions.