مدلسازی غلظت تری هالومتان در آب شرب با استفاده از شبکه عصبی مصنوعی
محورهای موضوعی :
مدیریت محیط زیست
محمد جواد ذوقی
1
*
,
محمد علی جعفری
2
1 - کارشناس ارشد مهندسی محیط زیست - عضو هیئت علمی پژوهشکده محیط زیست جهاد دانشگاهی*(مسئول مکاتبات).
2 - کارشناس ارشد مهندسی محیط زیست - پژوهشکده محیط زیست جهاد دانشگاهی
تاریخ دریافت : 1388/01/15
تاریخ پذیرش : 1388/03/17
تاریخ انتشار : 1393/07/01
کلید واژه:
شبکه عصبی مصنوعی,
غلظت تری هالومتان,
غلظت کلر,
مشخصات کیفی آب,
چکیده مقاله :
در این مطالعه جهت مدل سازی میزان غلظت تری هالومتان در آب شرب، از شبکه عصبی مصنوعی استفاده شده است. پس از آموزش، شبکه عصبی قادر است براساس مشخصات کیفی آب و میزان غلضت کلر در آب شرب، میزان غلظت تری هالومتان را پیش بینی کند. جهت ارزیابی و تشریح مدل، آب تصفیه خانه سنگر واقع در شهرستان رشت به صورت موردی بررسی شده است. از اندازه گیری های انجام یافته بر روی آب شرب تصفیه خانه سنگر، داده های مورد نیاز، جهت آموزش و تست شبکه عصبی اخذ شده است، آب شرب این تصفیه خانه در سال 1386 و در فصول تابستان و زمستان پایش شده است. پارامتر هدف در شبکه عصبی، میزان غلظت تری هالومتان در آب شرب در نظر گرفته شده است. از بین سیزده نوع الگوریتم پس انتشار، الگوریتم بهینه انتخاب و جهت آموزش شبکه عصبی استفاده شد، و سپس ساختمان بهینه شبکه عصبی تعیین گردید. در این مطالعه شبکه عصبی با الگوریتم Marquardt-Levenberg که دارای هشت نرون در لایه پنهان می باشد، به عنوان شبکه عصبی بهینه انتخاب شده است. با توجه به شاخص های آماری به دست آمده (ضریب همبستگی= 997/0 ، ضریب انحراف معیار = 466/6) و داده های ورودی در نظر گرفته شده، برآورد میزان غلظت تری هالومتان در آب شرب توسط شبکه عصبی از کارایی مناسبی برخوردار است.
چکیده انگلیسی:
In this study a neural network model is proposed for modeling tri-halo-methane concentration indrinking water. After training, the neural network model predicts tri-halo-methane concentration basedon input data. Parameters such as pH, Temperature, free chlorine residue and TOC were used as inputdata. To validate the proposed method, a case study was carried out, based on the data obtained fromGuilan grand treatment plant (Sangar). The Levenberg-Marquardt algorithm was selected as the bestof thirteen back-propagation algorithms. The optimal neuron number for Levenberg-Marquardtalgorithm is 8 neurons. The performance of modeling was determined. The trends of the forecast andmeasured data were in good agreement.
منابع و مأخذ:
منابع
صمدی، محمدتقی و همکاران، بهار1385. "بررسی مقایسه ای حذف تری هالومتان ها از آب شرب با ستون آکنده زدایش با هوا و نانوفیلتراسیون"، مجله آب و فاضلاب، شماره 57،
Garcia-Villanova, R.J., Garcia, C., Gomez, A., Paz Garcia, M., & Ardanuy, R. (1997). Formation, evolution, and modeling of trihalomethane in the drinking water of a town: I. At the municipal treatment utilities. Water Research, 31 (6), 1229-1308.
Hsu, Ching-Hung, Woei-Lih Jeng, Ruey-Mai Chang, Ling-Chu Chien, and Bor-Cheng Han., (2001). “Estimation of potential lifetime cancer risks for trihalomethane from consuming chlorinated drinking water in Taiwan” J. Environment Research, 85, 77-82
W. Elshorbagy., 2000. Kinetics of THM species in finished water, J. Water Resource Planning and Management 126(1) 21-28.
غنی زاده، قادر و نقی ئی، محمدرضا. 1382. "پیامدهای بارداری ناشی از مصرف آب شرب حاوی ترکیبات آلی کلره"، مجموعه مقالات ششمین همایش بهداشت محیط
World Health Organization, Geneva. 1984. World Health Organization, Guidelines for Drinking Water Quality, Vol. 2: Health Criteria and Other Supporting Information
ناصری، سیمین. 1375. "فرآورده های جانبی کلرزنی و روشهای کاهش آنها"، مجله آب و محیط زیست، شماره 4.
Bestamin, O., Ahmet, D., 2007. Neural network prediction model for methane fraction inbiogas from field scale landfill bioreactors. Environmental Modelling & Software 22: 815-822.
Rodriguez, M.J., Se´rodes, J.B., 1999. Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems. Environmental Modelling & Software 14 (1), 93-102.
Onkal-Engin, G., Demir, I., Engin, S.N., 2005. Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling & Software 20 (7), 843-850.
Kolehmainen, M., Martikainen, H., Ruuskanen, J., 2001. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment 35: 815-825.
Holubar, P., Zani, L., Hager, M., Fro¨schl, W., Radak, Z., Braun, R., 2002. Advanced controlling of anaerobic digestion by means of hierarchical neural networks. Water Research 36, 2582-2588.
Maier, H.R., Dandy, G.C., 1998. Understanding the behaviour and optimising the performance of back-propagation neural networks: an empirical study. Environmental Modelling & Software 13 (2), 179-191.
Hagan, M.T., Demuth, H.B., Beale, M.H., 1996. Neural Network Design. PWS Publishing, Boston, MA.
Abdi, H., Valentin, D., Edelman, B., O’Toole, A.J., 1996. A WidroweHoff learning rule for a generalization of the linear auto-associator. Journal of Mathematical Psychology 40 (2), 175-182.
A.P.H.A., A.W.W.A. & W.P.C.F., 1992. Standard methods for the examination of water and wastewater. 16th edition. American Public Health Association, American water Works Association and Water Pollution Control Federation, Washington, D.C.
حاج کاظمی ها، نرگس. 1379. "بررسی وضعیت کدورت، pH، کلر باقیمانده و تری هالومتانها در آب استخرهای شنای دائمی در سطح تهران"، پایان نامه کارشناسی ارشد، دانشکده محیط زیست دانشگاه علوم و تحقیقات تهران.
Md. Pauzi Abdullah, C.H. yew, Mohamad Salleh bin Ramli., 2003. “Formation, modeling and validation of trihalomethanes in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilanand Sabak Bernam, Selangor”,water research 37 4637-4644.
Hamed, M.M., Khalafallah, M.G., Hassanien, E.A., 2004. Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software 19 (10), 919-928.
Almasri, M.N., Kaluarachchi, J.J., 2005. Modular neural networks to predict the nitrate distribution in ground water using the onground nitrogen loading and recharge data. Environmental Modelling & Software 20 (7), 851- 871.