الگوی پراکنش گونه پده با استفاده از توابع K، L، G و J در منطقه مارون بهبهان
محورهای موضوعی :
اکوسیستم ها
مریم معصومی باباعربی
1
,
رضا بصیری
2
*
,
مصطفی مرادی
3
,
بهمن کیانی
4
1 - کارشناس ارشد دانشکده منابع طبیعی دانشگاه صنعتی خاتم الانبیاء بهبهان.
2 - دانشیار گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتمالانبیاء بهبهان
3 - دانشیار دانشکده منابع طبیعی دانشگاه صنعتی خاتم الانبیاء بهبهان.
4 - دانشیار دانشکده منابع طبیعی و کویرشناسی دانشگاه یزد.
تاریخ دریافت : 1402/07/29
تاریخ پذیرش : 1402/09/15
تاریخ انتشار : 1402/09/01
کلید واژه:
الگوی پراکنش,
توده خالص و آمیخته,
جنگلهای رودخانهای,
توابع ناهمگن,
چکیده مقاله :
زمینه و هدف: شناخت الگوی مکانی گونههای گیاهی برای بررسی موقعیت تاجپوشش، وضعیت زادآوری، پویایی جنگل و شناسایی روابط زیستی موجود در این اکوسیستمها ضروری است. یکی از اهداف اصلی در تحلیل الگوی مکانی درختان در بومسازگان جنگل، کشف روابط معنی دار بیشتر بین درختان و محیطزیست آنها است. به این منظور از روشهای تجزیهوتحلیل خاصی برای کمی کردن الگوی مکانی جوامع گیاهی استفاده میشود. هدف از این پژوهش تعیین الگوی مکانی پده از طریق بهکارگیری توابع مختلف K، L، G و J و بررسی قابلیت توابع در تعیین جزئیات بیشتر الگوی مکانی این گونه در جنگلهای رودخانهای مارون بهبهان است.
روش بررسی: دو توده خالص و آمیخته از گونه پده مورد مطالعه و آماربرداری صد در صد قرار گرفت. موقعیت مکانی (فاصله و آزیموت) تمام درختان پده دارای قطر بیشتر از 5 سانتیمتر تعیین شد. با استفاده از توابع K رایپلی، L، G و J الگوی مکانی پده در دو توده خالص و آمیخته تعیین شد. جهت تحلیل تبیینی در تجزیه آمار نقطه ای، آزمون فرض تصادفی بودن کامل نقاط در نظر گرفته شد. آزمون فرض معمول در آمار تحلیل نقطهای، بر پایه آزمونهای شبیهسازی مثل آزمون معنیداری مونتکارلو منطبق شد. این آزمون با تکرار 999 بار انجام شد تا احتمال خطای نوع اول حداقل نزدیک به 5% شود. همچنین بهمنظور بررسی همگنی و ناهمگنی مناطق موردمطالعه نیز از آزمون کولموگروف-اسمیرنوف و برای تحلیل الگوی پراکنش نیز از نرمافزار R (Var3.2.2) استفاده شد.
یافته ها: نتایج مربوط به تحلیل الگوی پراکنش مکانی پده با استفاده از تابع K رایپلی در توده خالص بیانگر این است که الگوی توزیع پده تا فاصله تقریباً 150 متری کپهای و از این فاصله به بعد، الگو به سمت تصادفی و سپس یکنواختی تغییر یافته است. در توده آمیخته نیز تا فاصله حدوداً 125 متری الگوی کپهای معنیداری دیده میشود. نتایج تحلیل تابع L ناهمگن در توده خالص الگوی مکانی پده را تا فاصله حدود 150 متری کپهای معنیداری نشان میدهد. در توده آمیخته تا حدود فاصله 125 متری الگو کپهای و از این فاصله به بعد الگو به سمت تصادفی و سپس بهطور معنیداری به سمت یکنواختی تغییر پیدا میکند. تابع ناهمگن G در توده خالص پده تا فاصله حدود 100 متری با یک شیب ملایم مبین الگوی کپه ای است. در توده آمیخته پده از فواصل اولیه به بعد، منحنی با یک شیب ملایم نشانگر یک الگوی کپه ای متوسط است. مقدار شاخص J در توده خالص، تا فاصله حدود 30 متری معادل 1 است و منحنی حالت یکنواخت نشان میدهد که بیانگر وجود یک الگوی تصادفی تا این فاصله است. مقدار شاخص از فاصله 30 تا حدوداً 75 متری با یک شیب تقریباً تند کمتر از 1 شده است که بیانگر الگوی کپه ای نسبتاً قوی است. در توده آمیخته، مقدار شاخص تا فاصله حدود 60 متری، با یک شیب تند تر کمتر از 1 شده و الگوی کپه ای قوی را نشان می دهد.
بحث و نتیجه گیری: کلیه توابع مورد بررسی در توده خالص و آمیخته، تا فاصله حدود 100 متری نتایج مشابهی را که همان الگوی کپهای است تأیید کردند. تابع J جزئیات بیشتری از الگوی مکانی را ارائه داد. همه توابع وجود یک نوع وابستگی اکولوژیکی بین پایه های پده را مورد تأیید قراردادند.
چکیده انگلیسی:
Background and Objective: Recognition of spatial pattern of plant species is essential to check the canopy position, regeneration, forest dynamics and identify biological relationships in an ecosystem. One of the main goals in analyzing the spatial pattern of trees in forest ecosystems is to discover more meaningful relationships between trees and their environment. For this purpose, special analytical methods are used to quantify the spatial pattern of plant communities. The aim of this study was to determine the spatial pattern of Populus euphratica Oliv. using various K, L, G and J functions and the ability of these functions in determining details spatial pattern of the species in riparian forests of Maroon, Behbahan.
Material and Methodology: Two stands of Populus euphratica including Pure and mixed were studied and callipered. Position (distance and azimuth) of all individuals with DBH larger than 5 cm was set. Spatial pattern of Populus euphratica in both pure and mixed stands was determined using Ripley's K function, L, G and J functions. For explanatory analysis in analysis of point statistics, the assumption test of complete randomness of points was considered. The usual hypothesis test in point analysis statistics was applied based on simulation tests such as the Monte Carlo significance test. This test was repeated 999 times so that the probability of the first type of error is at least close to 5%. Also, in order to check the homogeneity and heterogeneity of the studied areas, the Kolmogorov-Smirnov test was used, and R software (Var3.2.2) was used to analyze the distribution pattern.
Finds: The results related to the analysis of the spatial distribution pattern of the Populus using Ripley's K function in the pure stand indicate that the distribution pattern of the Populus up to a distance of approximately 150m is clumped and from this distance onwards, the pattern has changed to randomness and then to uniformity. A significant clumped pattern can be seen in the mixed stand up to a distance of about 125m. The results of the analysis of the heterogeneous L function in the pure stand show the spatial pattern of the field up to a distance of about 150m, a significant clump. In the mixed stand up to a distance of 125m, the pattern is aggregated and from this distance onwards, the pattern changes towards randomness and then significantly towards uniformity. The inhomogeneous function G in the pure stand of Populus up to a distance of about 100m shows a clumped pattern with a low slope. In the mixed stand of Populus from the initial intervals onwards, the curve with a low slope indicates a medium aggregated pattern. The value of the J index in the pure stand is equal to 1 up to a distance of about 30m, and the uniform state curve shows the existence of a random pattern up to this distance. The value of the index is less than 1 from the distance of 30 to about 75m with an almost steep slope, which indicates a relatively strong clumped pattern. In the mixed stand, the value of the index is less than 1 up to a distance of about 60m, with a steeper slope, and shows a strong clumped pattern.
Results and Discussion: All functions for two stands have confirmed similar results which are clumped up to a distance of about 100 meters. The J function provided more detail of the spatial pattern. Generally, the functions endorsed a type of ecological dependency between the Populus euphratica individuals.
منابع و مأخذ:
Dale, M. R. T., 1999. Spatial pattern analysis in plant ecology. Ecology, 88, pp. 366-370.
Ledo, A., Montes, F., & Condés, S., 2012. Different Spatial Organisation Strategies of Woody Plant Species in A Montane Cloud Forest. Acta Oecologica, 38, pp. 49-57.
Krebs, C. J., 2013. Ecological Methodology. 2nd Edit, Version 4, University of Columbia, 620 pg.
Cressie, N.A.C., 1993. Statistics for spatial data. Wiley, New York.
Morisita, M., 1957. A new method for the estimation of density by spacing method applicable to nonrandomly distributed populations. Physiology and Ecology, 7: pp. 134–144, 1957. Japanese with English summary.
Greig-Smith, P., 1983. Quantitative Plant Ecology. Oxford: Blackwell Scientific Publishing, 101–145.
Ripley, B. D., 1987. Spatial point pattern analysis in ecology. In Develoments in Numerical Ecology, pp: 407-429. Springer Berlin Heidelberg.
van Lieshout, M. C., 2010. Spatial Point Process Theory. Handbook of Spatial Statistics, chapter 16, pp. 263-298.
Basiri, R., Sohrabi, H., Mozayen, M., 2006. A Statistical Analysis of the Spatial Pattern of Trees Species in Ghamisheleh Marivan Region, Iran. Journal the Iranian natural resource, 59(2): pp. 579-588. (In Persian)
Akhavan, R., Sagheb-Talebi, KH., Hassani, M., Parhizkar, P., 2010. Spatial patterns in untouched beech (Fagus orientalis Lipsky) stands over forest development stages in Kelardasht region of Iran. Iranian Journal of Forest and Poplar Research, 18(2), pp. 322-336. (In Persian)
Erfanifard, Y., Mahdian, F., 2012. Comparative investigation on the methods of true spatial pattern analysis of trees in forests, Case study: Wild pistachio research forest, Fars province, Iran. Iranian Journal of Forest and Poplar Research, 20(1), pp. 62-73. (In Persian)
da Silva, K. E., Martins, S. V., Fortin, M. J., Ribeiro, M. C., de Azevedo, C. P., Ribeiro, C. A. Á. S., Santos, N. T., 2014. Tree species community spatial structure in a terra firme Amazon forest, Brazil. Bosque, 35(3), pp. 347-355.
Baddeley, A., Diggle, P. J., Hardegen, A., Lawrence, T., Milne, R. K., Nair, G., 2014. On tests of spatial pattern based on simulation envelopes. Ecological Monographs, 84(3), pp. 477-489.
Cronie, O., Van Lieshout, M. N. M., 2015. AJ‐function for Inhomogeneous Spatio‐temporal Point Processes. Scandinavian Journal of Statistics, 42(2), pp. 562-579.
Illian, J., Penttinen, A., Stoyan, H., Stoyan, D., 2008. Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons Inc, West Sussex.
Sadr, A.V., Movahed, S.M.S., 2021. Clustering of local extrema in Planck CMB maps. Monthly Notices of the Royal Astronomical society, 503, pp. 815-829. (In Persian)
Zolfaghari, Z., Moradi, M., Basiri, R., Ghasemi, A., 2022. Evaluation of Tecomella undulata R. spatial distribution pattern in Bushehr province. Journal of environmental science and technology, 24(3), pp. 131-143. (In Persian)
Alvarez, L. J., Epstein, H. E., Li, J., G. S. Okin., 2011. Spatial patterns of grasses and shrubs in an arid grassland environment. Ecosphere 2(9), pp. 1-6.
Cisz, M. E., M. J. Falkowski, B. Orr., 2013. Small-scale spatial pattern of Copernicia alba morong near Bahia Negra, Paraguay. Natural Resources 4: pp. 369-377.
Erfanifard, Y., Zare, L., Feghhi, J., 2014. Application of Nearest Neighbor Indices in Persian Oak (Quercus brantii var. persica) Coppice Stands of Zagros Forests. Iranian journal of applied ecology, 2(5), pp. 15-25. (In Persian)
Foxall, R., Baddeley, A., 2002. Nonparametric measures of association between a spatial point process and a random set, with geological applications. Applied Statistics, pp. 165-182.
He, Q., Ye, M., Zhao, X., Pan, X., 2023. Environmental Factors’ Effects on Stem Radial Variations of Populus euphratica in the Lower Reaches of the Tarim River in Northwestern China. Sustainability, 15(15), 11556. https://doi.org/10.3390/su151511556.
Basiri, R., Taleshi, H., Pourrezaee, J., Hassani, S. M., Gharehghani, R., 2011. Flora, life form and chorotypes of plants in river forest Behbahan, Iran. Middle-East Journal Of Scientific Research, 9(2), pp. 246-252. (In Persian)
Soman, S., Beyeler, S., Kraft, S. E., Thomas, D., Winstanley, D., 2007. Ecosystem Services From Riparian Area: A Brief Summary Of The Liturature.
Han, L., Wang, H., Zhou, Z., & Li, Z., 2008. Spatial distribution pattern and dynamics of the primary population in a natural Populus euphratica forest in Tarim Basin, Xinjiang, China. Frontiers of Forestry in China, 3(4), pp. 456-461.
Basiri, R., Riazi, A., Taleshi, H., Pourrezaei, J., 2014. The structure and composition of riparian forests of Maroon River, Behbahan. Iranian Journal of Forest and Poplar Research, 22(2), pp. 307-321. (In Persian)
Basiri, R., Moradi, M., Kiani, B., and Maasumi Babaarabi, M., 2018. Evaluation of distance methods for estimating population density in Populus euphratica Olivier natural stands (case study: Maroon riparian forests, Iran). Journal of forest science. 64: 5, pp. 230–244. (In Persian)
Wang, L., Zhang, H., Feng, L., Sun, R., 2014. Ripley's k based analysis of base station distribution. International Conference on Information and Communications Technologies (ICT 2014). 15-17 May 2014, Nanjing, China. IET Conference Proceedings, 2014, pp. 1.034-1.034, IET Digital Library.
Camarero, J.J., Gutiérrez, E., Fortin, M.J., 2000. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. Forest Ecology and Management, 134(1), pp: 1-16.
Besag, J., & Diggle, P. J. (1977). Simple Monte Carlo tests for spatial pattern. Applied statistics, pp. 327-333.
Lan, G., Zhu, H., Cao, M., Hu, Y., Wang, H., Deng, X., Shishun, Z., Jingyun, C., Jianguo, H., Youcai, H., Linyun, L., Hailong, X., Liu, L., 2009. Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, southwest China. Ecological Research, 24(5), pp. 1117-1124.
Stoyan, D. and Stoyan., H., 1994. Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics. John Wiley & Sons Inc, West Sussex.
Longuetaud, F., Seifert, T., Leban, J. M., Pretzsch, H., 2008. Analysis of long-term dynamics of crowns of sessile oaks at the stand level by means of spatial statistics. Forest ecology and management, 255(5), 2007-2019.
Szmyt, J., 2014. Spatial statistics in ecological analysis: from indices to functions. Silva Fennica, 48(1), 1008.
Getzin, S., Wiegand, K., 2007. Asymmetric tree growth at the stand level: random crown patterns and the response to slope. Forest Ecology and Management, 242(2), pp. 165-174.
Van Lieshout, M., Baddeley, A. J., 1996. A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica, 50(3), pp. 344-361.
Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., 2013. Applied spatial data analysis with R. 2nd edit, Springer.
Myllymäki, M., Mrkvicka, T., Seijo, H., Grabarnik, P., 2013. Global envelope tests for spatial processes. ArXiv preprint arXiv: 1307.0239.
Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point pattern analysis in ecology. Chapman and Hall Book publication.
Odum, E.P., 1986. Ecología, tercera edición, nueva editorial interamericana. SA de CV México, DF, 11(12), pp.326-400.
Meirelles, M. L. Barreto Luiz, A. F., 1995. Padrões espaciais de árvores de um cerrado em Brasília, DF. Revista Brasileira de Botânica, 18, pp.185-189.
Soriano, A.J.S., 1997. Distribuição espacial e temporal de invertebrados bentônicos da Represa de Barra Bonita-SP. São Carlos, UFSCar.
Lee, J. W., Noh, H. J., Lee, Y., Kwon, Y. S., Kim, C. H., Yoo, J. C., 2014. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: inferring from a case study of Korea. Ecology and evolution, 4(18), pp. 3689-3702.
Zhang, D., Yin, L., Pan, B., 2002. Biological and ecological characteristics of Tamarix L. and its effect on the ecological environment. Science in China Series D: Earth Sciences, 45, pp. 18-22.
Wiegand, T., He, F., Hubbell, S.P., 2013. A systematic comparison of summary characteristics for quantifying point patterns in ecology. Ecography, 36(1), pp. 92-103.
Schurr, F.M., Bossdorf, O., Milton, S.J., Schumacher, J., 2004. Spatial pattern formation in semi-arid shrubland: a priori predicted versus observed pattern characteristics. Plant Ecology, 173(2), pp: 271-282.
_||_
Dale, M. R. T., 1999. Spatial pattern analysis in plant ecology. Ecology, 88, pp. 366-370.
Ledo, A., Montes, F., & Condés, S., 2012. Different Spatial Organisation Strategies of Woody Plant Species in A Montane Cloud Forest. Acta Oecologica, 38, pp. 49-57.
Krebs, C. J., 2013. Ecological Methodology. 2nd Edit, Version 4, University of Columbia, 620 pg.
Cressie, N.A.C., 1993. Statistics for spatial data. Wiley, New York.
Morisita, M., 1957. A new method for the estimation of density by spacing method applicable to nonrandomly distributed populations. Physiology and Ecology, 7: pp. 134–144, 1957. Japanese with English summary.
Greig-Smith, P., 1983. Quantitative Plant Ecology. Oxford: Blackwell Scientific Publishing, 101–145.
Ripley, B. D., 1987. Spatial point pattern analysis in ecology. In Develoments in Numerical Ecology, pp: 407-429. Springer Berlin Heidelberg.
van Lieshout, M. C., 2010. Spatial Point Process Theory. Handbook of Spatial Statistics, chapter 16, pp. 263-298.
Basiri, R., Sohrabi, H., Mozayen, M., 2006. A Statistical Analysis of the Spatial Pattern of Trees Species in Ghamisheleh Marivan Region, Iran. Journal the Iranian natural resource, 59(2): pp. 579-588. (In Persian)
Akhavan, R., Sagheb-Talebi, KH., Hassani, M., Parhizkar, P., 2010. Spatial patterns in untouched beech (Fagus orientalis Lipsky) stands over forest development stages in Kelardasht region of Iran. Iranian Journal of Forest and Poplar Research, 18(2), pp. 322-336. (In Persian)
Erfanifard, Y., Mahdian, F., 2012. Comparative investigation on the methods of true spatial pattern analysis of trees in forests, Case study: Wild pistachio research forest, Fars province, Iran. Iranian Journal of Forest and Poplar Research, 20(1), pp. 62-73. (In Persian)
da Silva, K. E., Martins, S. V., Fortin, M. J., Ribeiro, M. C., de Azevedo, C. P., Ribeiro, C. A. Á. S., Santos, N. T., 2014. Tree species community spatial structure in a terra firme Amazon forest, Brazil. Bosque, 35(3), pp. 347-355.
Baddeley, A., Diggle, P. J., Hardegen, A., Lawrence, T., Milne, R. K., Nair, G., 2014. On tests of spatial pattern based on simulation envelopes. Ecological Monographs, 84(3), pp. 477-489.
Cronie, O., Van Lieshout, M. N. M., 2015. AJ‐function for Inhomogeneous Spatio‐temporal Point Processes. Scandinavian Journal of Statistics, 42(2), pp. 562-579.
Illian, J., Penttinen, A., Stoyan, H., Stoyan, D., 2008. Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons Inc, West Sussex.
Sadr, A.V., Movahed, S.M.S., 2021. Clustering of local extrema in Planck CMB maps. Monthly Notices of the Royal Astronomical society, 503, pp. 815-829. (In Persian)
Zolfaghari, Z., Moradi, M., Basiri, R., Ghasemi, A., 2022. Evaluation of Tecomella undulata R. spatial distribution pattern in Bushehr province. Journal of environmental science and technology, 24(3), pp. 131-143. (In Persian)
Alvarez, L. J., Epstein, H. E., Li, J., G. S. Okin., 2011. Spatial patterns of grasses and shrubs in an arid grassland environment. Ecosphere 2(9), pp. 1-6.
Cisz, M. E., M. J. Falkowski, B. Orr., 2013. Small-scale spatial pattern of Copernicia alba morong near Bahia Negra, Paraguay. Natural Resources 4: pp. 369-377.
Erfanifard, Y., Zare, L., Feghhi, J., 2014. Application of Nearest Neighbor Indices in Persian Oak (Quercus brantii var. persica) Coppice Stands of Zagros Forests. Iranian journal of applied ecology, 2(5), pp. 15-25. (In Persian)
Foxall, R., Baddeley, A., 2002. Nonparametric measures of association between a spatial point process and a random set, with geological applications. Applied Statistics, pp. 165-182.
He, Q., Ye, M., Zhao, X., Pan, X., 2023. Environmental Factors’ Effects on Stem Radial Variations of Populus euphratica in the Lower Reaches of the Tarim River in Northwestern China. Sustainability, 15(15), 11556. https://doi.org/10.3390/su151511556.
Basiri, R., Taleshi, H., Pourrezaee, J., Hassani, S. M., Gharehghani, R., 2011. Flora, life form and chorotypes of plants in river forest Behbahan, Iran. Middle-East Journal Of Scientific Research, 9(2), pp. 246-252. (In Persian)
Soman, S., Beyeler, S., Kraft, S. E., Thomas, D., Winstanley, D., 2007. Ecosystem Services From Riparian Area: A Brief Summary Of The Liturature.
Han, L., Wang, H., Zhou, Z., & Li, Z., 2008. Spatial distribution pattern and dynamics of the primary population in a natural Populus euphratica forest in Tarim Basin, Xinjiang, China. Frontiers of Forestry in China, 3(4), pp. 456-461.
Basiri, R., Riazi, A., Taleshi, H., Pourrezaei, J., 2014. The structure and composition of riparian forests of Maroon River, Behbahan. Iranian Journal of Forest and Poplar Research, 22(2), pp. 307-321. (In Persian)
Basiri, R., Moradi, M., Kiani, B., and Maasumi Babaarabi, M., 2018. Evaluation of distance methods for estimating population density in Populus euphratica Olivier natural stands (case study: Maroon riparian forests, Iran). Journal of forest science. 64: 5, pp. 230–244. (In Persian)
Wang, L., Zhang, H., Feng, L., Sun, R., 2014. Ripley's k based analysis of base station distribution. International Conference on Information and Communications Technologies (ICT 2014). 15-17 May 2014, Nanjing, China. IET Conference Proceedings, 2014, pp. 1.034-1.034, IET Digital Library.
Camarero, J.J., Gutiérrez, E., Fortin, M.J., 2000. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. Forest Ecology and Management, 134(1), pp: 1-16.
Besag, J., & Diggle, P. J. (1977). Simple Monte Carlo tests for spatial pattern. Applied statistics, pp. 327-333.
Lan, G., Zhu, H., Cao, M., Hu, Y., Wang, H., Deng, X., Shishun, Z., Jingyun, C., Jianguo, H., Youcai, H., Linyun, L., Hailong, X., Liu, L., 2009. Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, southwest China. Ecological Research, 24(5), pp. 1117-1124.
Stoyan, D. and Stoyan., H., 1994. Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics. John Wiley & Sons Inc, West Sussex.
Longuetaud, F., Seifert, T., Leban, J. M., Pretzsch, H., 2008. Analysis of long-term dynamics of crowns of sessile oaks at the stand level by means of spatial statistics. Forest ecology and management, 255(5), 2007-2019.
Szmyt, J., 2014. Spatial statistics in ecological analysis: from indices to functions. Silva Fennica, 48(1), 1008.
Getzin, S., Wiegand, K., 2007. Asymmetric tree growth at the stand level: random crown patterns and the response to slope. Forest Ecology and Management, 242(2), pp. 165-174.
Van Lieshout, M., Baddeley, A. J., 1996. A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica, 50(3), pp. 344-361.
Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., 2013. Applied spatial data analysis with R. 2nd edit, Springer.
Myllymäki, M., Mrkvicka, T., Seijo, H., Grabarnik, P., 2013. Global envelope tests for spatial processes. ArXiv preprint arXiv: 1307.0239.
Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point pattern analysis in ecology. Chapman and Hall Book publication.
Odum, E.P., 1986. Ecología, tercera edición, nueva editorial interamericana. SA de CV México, DF, 11(12), pp.326-400.
Meirelles, M. L. Barreto Luiz, A. F., 1995. Padrões espaciais de árvores de um cerrado em Brasília, DF. Revista Brasileira de Botânica, 18, pp.185-189.
Soriano, A.J.S., 1997. Distribuição espacial e temporal de invertebrados bentônicos da Represa de Barra Bonita-SP. São Carlos, UFSCar.
Lee, J. W., Noh, H. J., Lee, Y., Kwon, Y. S., Kim, C. H., Yoo, J. C., 2014. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: inferring from a case study of Korea. Ecology and evolution, 4(18), pp. 3689-3702.
Zhang, D., Yin, L., Pan, B., 2002. Biological and ecological characteristics of Tamarix L. and its effect on the ecological environment. Science in China Series D: Earth Sciences, 45, pp. 18-22.
Wiegand, T., He, F., Hubbell, S.P., 2013. A systematic comparison of summary characteristics for quantifying point patterns in ecology. Ecography, 36(1), pp. 92-103.
Schurr, F.M., Bossdorf, O., Milton, S.J., Schumacher, J., 2004. Spatial pattern formation in semi-arid shrubland: a priori predicted versus observed pattern characteristics. Plant Ecology, 173(2), pp: 271-282.