ارزیابی اثر تیمارهای مختلف کود، زغال زیستی و قارچ تریکودرما بر عملکرد، اجزای عملکرد و شاخصهای کیفی لاین مادری ذرت رقم (هیبرید KSC 704)
محورهای موضوعی : کشاورزی و محیط زیستمهدی احمدیوسفی 1 * , مهدیه امیری نژاد 2 , بهاره پارسامطلق 3
1 - پژوهشیار دانشگاه جیرفت، ایران. * (مسوول مکاتبات)
2 - استادیار گروه زراعت و اصلاح نباتات، دانشگاه جیرفت، ایران.
3 - استادیار گروه زراعت و اصلاح نباتات، دانشگاه جیرفت، ایران.
کلید واژه: بنیه بذر, ذرت, قدرت بذر و نهادههای زیستی.,
چکیده مقاله :
زمینه و هدف : ذرت (Zea mays) بعد از گندم مهمترین غله دنیا است که به عنوان غذای انسان، دام و همچنین مواد اولیه تولید نشاسته، روغن، پروتئین، تهیه الکل و غیره کاربرد دارد. یکی از اهداف مهم در برنامههای تولید بذر، به دست آوردن بذور با کیفیت عالی و به عنوان اصلیترین نهاده در کشت گیاهان میباشد. یکی از مؤلفههای افزایش عملکرد محصولات، مصرف بیشتر انواع نهادهها کشاورزی به ویژه کودهای شیمیایی است که پیامدهای متعدد زیست محیطی و اقتصادی – اجتماعی زیادی به همراه دارند. بنابراین بهبود کیفت بذر تولید شده با استفاده از نهادههای پاک میتواند گامی به سوی امنیت غذایی پایدار باشد. هدف از انجام این پژوهش بررسی اثر تیمارهای مختلف کود، زغال زیستی و قارچ تریکودرما در گیاه مادری بر عملکرد، اجزای عملکرد و شاخصهای کیفی لاین مادری ذرت رقم (هیبرید KSC 704) میباشد.
روش بررسی: این آزمایش به صورت اسپلیت پلات فاکتوریل بر پایه طرح بلوکهای کامل تصادفی با سه تکرار در مزرعه نمونه دانشگاه جیرفت در سال زراعی 1394 اجرا شد. چهار سطح کود (NPK) به ترتیب شاهد،30 درصد ،70 درصد و 100 درصد توصیه کودی به عنوان فاکتور اصلی و دو سطح استفاده و عدم استفاده از زغال زیستی و سه سطح قارچ تریکودرما؛ شاهد، Trichoderma atroviride و Trichodema harzianum به عنوان فاکتورهای فرعی در نظر گرفته شدند. کلیه عملیات کاشت و داشت انجام شد، در نهایت با برداشت یک متر مربع از هر واحد آزمایشی، بلالها جدا و تحت شرایط عادی خشک شده، و صفاتی مانند تعداد ردیف در بلال، تعداد دانه در ردیف، تعداد دانه در بلال، وزن هزار دانه و عملکرد دانه ثبت شدند. جهت بررسی کیفیت بذرهای تولید شده روی بوتههای مادری و محاسبه سرعت جوانهزنی، درصد گیاهچه عادی، طول گیاهچه و وزن خشک گیاهچه، آزمون جوانهزنی استاندارد انجام شد.
یافتهها: نتایج نشان داد که استفاده از زغال زیستی، گونه تریکودرما و سطوح مختلف کودی بر درصد گیاهچه عادی، سرعت جوانهزنی، طول گیاهچه و وزن خشک گیاهچه در آزمونهای جوانهزنی استاندارد بر عملکرد و اجزای عملکرد اثر معنیداری داشته است، به نحوی که تیمار اثر متقابل 100 درصد توصیه کودی در قارچ Trichoderma harzianum نسبت به تیمار اثر متقابل شاهد-شاهد سبب افزایش 55 درصدی عملکرد دانه شد و برهمکنش زغال زیستی در قارچTrichodema harzianum و برهمکنش زغال زیستی و 100 درصد توصیه کودی نسبت به تیمارهای شاهد به ترتیب سبب افزایش 36 و 41 درصدی سرعت جوانهزنی شد.
بحث و نتیجه گیری: با توجه به نتایج میتوان نتیجه گرفت که استفاده از زغال زیستی، سطوح کودی مختلف و قارچ Trichodema harzianum باعث افزایش کمیت و کیفیت بذور تولیدشده روی بوته مادری نسبت به شرایط شاهد شد و اگرچه تیمارهای مورد استفاده (زغال زیستی و گونههای قارچ تریکودرما) کمیت مصرف کود را تحت تأثیر قرار نمیدهند، اما از طریق افزایش کارایی مصرف کود (در شرایط مصرف کود کافی) باعث افزایش توان خاکهای زراعی و کاهش آلودگی محیط زیست شوند.
Background and Objective: This experiment was conducted to investigate the effect of different treatments of fertilizer, biochar and Trichoderma fungi on the yield, yield components and quality indices of the maize mother lines (hybrid KSC 704) as a factorial split-plot based on a randomized complete block design with three replications in the sample farm of the University of Jiroft in the cultivation period of 2015.
Material and Methodology: Four levels of fertilizer (NPK) (control, 30%, 70%, and 100%) were used as the main factor and two levels of use and non-use of biochar and three levels of Trichoderma fungi including (control, Trichoderma atroviride and Trichodema harzianum) were considered as subfactors. The seeds were isolated and dried under normal conditions after the removal of one square meter of each unit, and traits such as the number of row per ear, number of grain per row, number of grain per ear, 1000 Grain weight, and yield were recorded. Standard seed germination test was carried out in order to evaluate the quality of seeds produced by native plants and to calculate germination rate, normal seedling percentage, seedling length, and seedling dry weight.
Findings: The results showed that use of biochar, Trichoderma species and different levels of fertilizer significantly improved normal seedling percentage, germination rate, seedling length, and seedling dry weight in standard germination tests, and also had a significant effect on performance and yield components. In some ways, 100% fertilizer recommendation interaction in Trichoderma harzianum compared to control-control interaction caused 55% increase in grain yield and biochar interaction in Trichodema harzianum and biochar interaction and 100% fertilizer recommendation compared to control treatments, respectively. Caused 36 and 41% increase in germination rate.
Discussion and Conclusions: According to the results, it can be concluded that the use of biochar, different fertilizer levels and type of fungi Trichodema harzianum increased the quantity and quality of the seeds produced on the mother plant compared with the control conditions. Although used treatments (biochar and Trichoderma fungi) did not affect the quantity of the used fertilizer, they enhanced the capacity of the agricultural soil and reduced the environmental pollution through increasing the efficiency of the used fertilizer (under the conditions of using sufficient fertilizer).
1. Farrell, M., Macdonald, L. M., Butler, G., Chirino-Valle, I., Condron, L. M., 2014. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology Fertilizer Soils, Vol. 50(1), pp. 169-178.
2. Maguire, J. D., 1962. Speed of Germination—Aid In Selection And Evaluation for Seedling Emergence And Vigor1. Crop science, Vol. 2(2), pp. 176-177.
3. Agbede, T.M., Oyewumi, A., 2022. Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, Vol. 7, pp.151.
4. Zebarth, B. J., Sheard, R. W., 1992. Influence of rate and timing of nitrogen fertilization on yield and quality of hard red winter wheat in Ontario. Journal Plant Science, Vol. 72(1), pp.13-19.
5. Ahmad Yousefi, M., Kamkar, B., Amiri Nezhad, M., Gharekhloo, J., 2019. Assessment of the effect of different chemical fertilizers, biochar and Trichoderma fungi treatments at mother plant on germination and other hybrid corn KSC 704 seed germination components in maternal growth under accelerated aging test. Iranian Journal of Seed Science and Research, Vol. 6, pp. 133-144. (In Persian)(Journal of Seed Science and Resarch).
6. Sun, J., Norouzi, O. and Mašek, O., 2021. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresource technology, pp.126-258.
7. Li, Y., Long, X., Chong, Y., Yu, G., Huang, Z., 2017. Characterization of the cell_Fe mineral aggregate from nitrogen removal employing ferrous and its adsorption features to heavy metal. Journal cleaner production. Vol. 156, pp. 538-548.
8. Wang, B., Ma, Y., Lee, X., Wu, P., Liu, F., Zhang, X., Li, L. and Chen, M., 2021. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Science of the Total Environment, Vol. 758, pp.143-164.
9. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., Joseph, S., 2010. Sustainable biochar to mitigate global climate change. Nature communications, Vol. 1, pp. 56.
10. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., Lorito, M., 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, Vol. 2(1), pp. 43.
11. Tang, J., Zhu, W., Kookana, R., Katayama, A., 2013. Characteristics of biochar and its application in remediation of contaminated soil. Journal Biosci Bioengineer, Vol. 116(6), pp. 653-659.
12. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Ok, Y. S., 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, Vol .99, pp. 19-33.
13. International Seed Testing Association (ISTA)., 2008. International rules for seed testing. Basserdorf, Switzerland.
14. Macdonald, L. M., Farrell, M., Van Zwieten, L., Krull, E. S., 2014. Plant growth responses to biochar addition: an Australian soils perspective. Biology Fertilizer Soils, Vol. 50(7), pp. 1035-1045.
15. Major, J., Rondon, M., Molina, D., Riha, S. J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant soil, Vol. 333(1-2), pp. 117-128.
16. Major, J., Steiner, C., Downie, A., 2009. Biochar effects on nutrient leaching. In ‘Biochar for environmental management’.(Eds J Lehmann, S Joseph) pp. 203–321.
17. Borchard, N., Spokas, K., Prost, K., Siemens, J., 2014. Greenhouse gas production in mixtures of soil with composted and noncomposted biochars is governed by char-associated organic compounds. Journal environemtal quali, 43(3), pp. 971-979.
18. Madiba, O. F., Solaiman, Z. M., Carson, J. K., Murphy, D. V., 2016. Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biology Fertilizer Soils, Vol. 52(4), pp. 439-446.
19. Baker, B., Zambryski, P., Staskawicz, B., Dinesh-Kumar, S. P., 1997. Signaling in plant-microbe interactions. Science, Vol. 276(5313), pp. 726-733.
20. Jin, J., Liu, X., Wang, G., Mi, L., Shen, Z., Chen, X., Herbert, S. J., 2010. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Field Crops Research, Vol. 115(1), pp. 116-123.
21. Lal, R., 2011. Sequestering carbon in soils of agro-ecosystems. Food policy, Vol. 36, S33-S39.
22. Tatarková, V., Hiller, E., Vaculík, M., 2013. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and Environmental Safety, Vol. 92, pp. 215-221.
23. Ji, C., Cheng, K., Nayak, D., Pan, G., 2018. Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation. Journal cleaner production, Vol. 192, pp. 916-923.
24. Husk, B., Major, J., 2011. Biochar commercial agriculture field trial in Québec, Canada–year three: Effects of biochar on forage plant biomass quantity, quality and milk production. International Biochar Initiative. Vol. 8, pp. 342- 352.
25. Girardin, P., Tollenaar, M., Deltour, A., Muldoon, J., Meyer, J. L., 1987. Temporary N starvation in maize (Zea mays L.): effects on development, dry matter accumulation and grain yield. Agronomie, Vol. 7(4), pp. 289-296
26. Lorenz, K., Lal, R., 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J. Plant Nutr. Soil Science, Vol. 177(5), pp. 651-670.
27. Higashikawa, F. S., Conz, R. F., Colzato, M., Cerri, C. E. P., Alleoni, L. R. F., 2016. Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water. Journal cleaner production, Vol. 137, pp. 965-972.
28. Ghassemi-Golezani, K., Mardfar, R. A., 2008. Effects of limited irrigation on growth and grain yield of common bean. Journal Plant Science, Vol. 3(3), pp. 230-235.
29. Blackwell, P., Krull, E., Butler, G., Herbert, A., Solaiman, Z., 2010. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Soil Research, Vol. 48(7), pp. 531-545.
30. Neumann, B., Laing, M., 2006. Trichoderma: an ally in the quest for soil system sustainability. Biological Approaches to Sustainable Soil System. Taylor and Francis, Boca Raton, FL, pp. 491-500.
31. Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., Engelhard, M. H., 2006. Oxidation of black carbon by biotic and abiotic processes. Org. geochem, Vol. 37(11), pp. 1477-1488.
32. Zhai, L., CaiJi, Z., Liu, J., Wang, H., Ren, T., Gai, X., Liu, H., 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology Fertilizer Soils, Vol. 51(1), pp.113-122.
33. Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Vol. 158(3-4), pp. 436-442.
34. Lehmann, J., Gaunt, J., Rondon, M., 2006. Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, Vol. 11(2), pp. 403-427.
35. Harman, G. E., 2000. Myths and dogmas of biocontrol changes in perceptions derived from Research on Trichoderma harzinum T-22. Plant diseace, Vol. 84(4), pp. 377-393.
36. Khaliq, T. A. S. N. E. E. M., Mahmood, T. A. R. I. Q., Kamal, J. A. V. E. D., Masood, A. M. I. R., 2004. Effectiveness of farmyard manure, poultry manure and nitrogen for corn (Zea mays L.) productivity. International Journal Agriculture Biology, Vol. 2, pp. 260-263.
37. Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Crowley, D., 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecotoxicology and Environmental Safety, vol. 139(4), pp. 469-475.
38. Zhang, J., Wang, Q., 2016. Sustainable mechanisms of biochar derived from brewers' spent grain and sewage sludge for ammonia–nitrogen capture. Journal cleaner prodcution, vol. 112, pp. 3927-3934.
39. Kalla, V., Kumar, R., Basandrai, A. K., 2001. Combining ability analysis and gene action estimates of yield and yield contributing characters in maize (Zea mays L.). Crop Research, Vol. 22(1), pp. 102-106.
40. Zhou, Q., Lin, L., Qiu, W., Song, Z., Liao, B., 2018. Supplementation with ferromanganese oxide–impregnated biochar composite reduces cadmium uptake by indica rice (Oryza sativa L.). Journal cleaner prodcution, vol. 184, pp. 1052-1059.