تاثیر فاکتورهای نیتروژن، فسفر وکادمیوم در جذب زیستی توسط باکتری Halomonas elongata IBRC-M10433
محورهای موضوعی :
فلزات سنگین
زهرا کهراریان
1
,
مجتبی تاران
2
1 - کارشناسی ارشد میکروبیولوژی، دانشکده علوم پایه ، دانشگاه رازی، کرمانشاه، ایران *(مسوول مکاتبات).
2 - دانشیار میکروبیولوژی، دانشکده علوم پایه، دانشگاه رازی، کرمانشاه، ایران.
تاریخ دریافت : 1395/08/01
تاریخ پذیرش : 1395/10/29
تاریخ انتشار : 1398/05/01
کلید واژه:
تاگوچی,
حذف زیستی,
کادمیوم,
دریاچه شور,
Halomonas elongata IBRC-M10433,
چکیده مقاله :
زمینه و هدف: پساب های صنعتی به عنوان مهم ترین آلاینده های محیط زیستی محسوب می شوند که حاوی مقادیر فراوان از فلزات سنگین وتراکم بالای نمک می باشند .بیو تکنولوژی حذف فلزات سنگین از پساب های صنعتی با بکارگیری توانایی میکروارگانیسم ها به عنوان روشی مناسب و بهینه دراین زمینه در حال توسعه است. شناسایی باکتری های مقاوم به فلزات سمی و استفاده آن ها در فرآیند حذف زیستی تکنیکی پیچیده و مفید است. در این مطالعه توانایی سویه باکتریHalomonaselongata IBRC-M10433 جداشده از رسوبات دریاچه ارومیه در حذف فلز کادمیوم مورد بررسی قرار گرفت. هدف از این مطالعه بهینه سازی شرایط محیطی حذف فلز کادمیوم توسط باکتری Halomonas elongata IBRC- M10433بود. روش بررسی : طراحی آزمایش به روش تاگوچی به منظور تعیین شرایط بهینه نسبی فاکتورهای محیطی مانند کلریدآمونیوم (NH4Cl) به عنوان منبع نیتروژن، فسفات پتاسیم (K2HPo4) به عنوان منبع فسفرو غلظت کادمیوم در حذف زیستی کادمیوم توسط باکتری Halomonas elongata IBRC- M10433 مورد مطالعه قرار گرفت. آنالیز داده ها با استفاده از نرم افزارکامپیوتری Qualitek-4 انجام شد و اهمیت نسبی هریک از عوامل تعیین گردید. یافته ها : شرایط بهینه جذب در غلظت فسفات پتاسیم 3/0 گرم بر لیتر، کادمیوم100میلی گرم بر لیتروکلریدآمونیوم 2گرم بر لیتردر دمای 37 درجه سانتی گراد و pH 7 تعیین شد. سطح 1 فسفات پتاسیم یعنی 3/0 گرم بر لیترموثرترین فاکتور درجذب زیستی بود. بحث و نتیجه گیری: با توجه به هزینه بالا و مشکلات محیط زیستی روش های مرسوم حذف فلزات سنگین، حذف زیستی تکنیکی موثر و مقرون به صرفه می باشد. استفاده از باکتری های نمک دوست نسبی در پالایش زیستی با قدرت بالای جذب فلزات سنگین مفید می باشد.
چکیده انگلیسی:
Background and Objective: Industrial waste is considered as the most important environmental pollutants that contain significant amounts of heavy metals are high salt density.Biotechnology removal of heavy metals from industrial wastewater Babkargyry proved the ability of microorganisms developing in this field as an appropriate and efficient.In this study, the ability of strains of bacteria isolated from sediments of Lake Urmia Halomonas longate IBRC-M10433 for the removal of cadmium was investigated. The aim of this study was to optimize the removal of cadmium by bacterial environment was Halomonas longate IBRC- M10433. Method: Design of Experiments Taguchi method to determine the optimum conditions relative to environmental factors such as Ammonium chloride (NH4Cl) as a source of nitrogen, and phosphate potassium (K2HPO4) as a source of phosphorus and cadmium concentrations in biological removal of cadmium was studied by the bacterium Halomonas longata IBRC- M10433. Findings: The optimum conditions for absorption of potassium phosphate at a concentration of 3.0 g/L, cadmium 100 mg/L, Ammonium chloride 2 g/L, at 37 °C and pH 7, respectively. Level 1 means that 3.0 g of potassium phosphate absorption biological factors. Discussion and Conclusion: Due to high costs and environmental problems conventional methods to remove heavy metals, biological removal technique is effective and affordable. Use halophilic bacteria in biological treatment with high power absorption of heavy metals are useful.
منابع و مأخذ:
- Ansari, M. I. andMalik, A., 2007. Biosorption of nickel and cadmium metal resistant bacterial isolates from agricultural soil irrigated within dustrial waste water, J. Bioresour. Technol,vol.98, pp.3149–3153.
- Mair, R.M. Papper, L.L., Gebra, C. P,. 2000.EnviromentalMicrobiology. ACADEMICPress, chpter17,403-423.
- Rainbow, P. S. and White, S.L., ,1989. Comparative strategies of heavy metalaccumulation by crustaceans: zinc, copperand cadmium in adecapod. an amphipodandabarnacle. J. Hydrobiolo, Vol.174, pp.245-262.
- Patel, J.S., Patel, PC., and Kalia K. (2006). Isolation and characterization of nickel uptake by nickel resistant bacterial isolate. J.Bi. Environ. Sci, vol., 19(4), pp.297-301.
- Manasi, A., Rajesh, V., Krishna Kumar, A. and Rajesh, N. ,2014). Biosorption of cadmium using anovel bacterium isolated from an electronic industry effluent, J. Chem. Eng., vol.235, pp.176–185.
Desguin, B., Goffin, P., Viaene, E., Kleerebezem, M., Martin-Diaconescu, V., Maroney, M.J., Declercq, J. P., Soumillion, P. & Hols, P., 2014.Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat. Commun. Vol. 5, pp. 3615.
Gasemi, S. ,2006. Biosorption of copper from waste water by activated carbon preparealge sargssum spand gracilaria, J. corticata, vol. 11, pp.3-
Benavides, M.P. Gallego, S.M. Tomaro, M. L, 2005.ACADMIUM toxicity in plants Braz.J. of plant physiol, vol .171, pp.21-34.
Hetzer, A., Daughney, C.J. and Morgan, H.W. ,2006. Cadmium ion Biosorpation by thermophilic bacteria Geobacillus stear other mophilusand G. therm ocatenulatus. J. Appl. Environ. Microbiol, vol .72, pp.4020-4027.
Allun, H.K., Rond, S. R., Settalluri, V.S., Bondili, J.S. and Venkateshwar, S.V., 2007.Biosorption Aneco friendly alternative forheavymetal removal, African.J. Biotecchnol, Vol. 6, pp.2924-2931.
Quintelas, C., Fernandes, B., Castro J., Figueiredo, H., TavaresT., 2008.Biosorption of Cr(VI) by a Bacillus coagulansbiofilm supported on granular activated carbon. J. Chem.Engineer, Vol.136, pp.195–203.
Mahrasbi, M.R., Farahmsndkia Z., 2002.Heavy Metal Removal from Aqueous Solution by Adsorptionon Modified Banana Shell. J. Health and Environ.1: (In Persian).
Kuiper, I., Lagendij, EL., Bloemberg, G.V., and Lugtenberg BJJ, 2004. Rhizoremediation: Abeneficial plant-microbe interaction. J. MolPlant-Microbe Int1.vol.7(1), pp. 6-15.
Quintelas, C., Fonseca, B., Silva, B., Figueiredo, H., Tavares, T.,2009. Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacterviscosus supported on GAC. J. Bioresour. Technolo., vol.100, pp. 220–226.
Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, et al., 2015. Bioremediation of heavy metals from soiland aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, Vol.7(2), pp.2189-1292.
Kelly, DJ., Budd, K., and Lefebvre, DD., 2006.The biotransformation of mercury in pH statcultures of microfungi.J. Botany, vol.84(2), pp. 60-254.
Suresh Kumar, K., Dahms H-U, Won E-J., Lee J-S., and Shin K-H., 2015.Microalgae promising tool for heavy metalremediation. J. Ecotoxicol. Environ. Safety, vol.113, pp.52-329.
Sanchez-porro, C., Martin, S., Mellado, E., and Ventosa, A., 2003. Diversity of Moderately Halophilic Bacteria Producing Extracellular Hydrolytic Enzymes, J. Appl. Microbiol., vol.94, pp.295-300
Margesin R. and Schinner F., 2001.Potential of halotolerant and halophilic Microorgnisms for biotechnology. J. Extremophile., vol.5, pp. 73-83.
Ventosa, A., Nieto, J. and Oren J. (1998). A Biology of moderately halophilic aerobic bcteria. Microbiol, J. Mol. Biol., vol. 62, pp.504-544.
Vijayaraghavan, K., and Yun, Y. ,2008. Bacterial biosorbents and biosorption. J. Bioethanol.Adv., vol, 26(1), pp. 266-291.
Pradhan, S and L.C., Rai., 2001. Biotechnological potential of Microcystis sp. In Cu, Zn and Cd biosorption from nsingle and multimetallic systemes. J. Biometals, vol.14, pp: 67-74.
Iyer A., Mody, K. and Jha, B.,2005. Biosorption of heavy metals by a moderately halophiliceubacteria, Appl. Environ. Microbiol., vol.55, pp.2385-2390.
Azza, A.A., Wesam, A.H. Hedayat, M.S., Ghada, A.A.F., 2009.Biosorpationof some heavy metal ions using bacterial species isolated from agriculture waste water drains in Egypt. J. Appl. Sci. Research, vol.5(4), pp.372-383.
Abbas, S., Ismail, I., Mostafa, T., and Sulaymon, A. (2014). Biosorption of Heavy Metals: A Review. J.Chem. Sci. Technolo., vol.4, pp.74- 102.
Wang, J. and Chen, C. (2009). Biosorbents for heavy metals removal andtheir future, J. Biotechnol. Adv. Vol.27, pp.195-226.
Sendstatein, S. wanell, P.J, LeeK. R., and Mcdonagh, M., Field evaluation fmarineoil spillbioremediation, J. Microbiol. Rev. 1982, vol. 60, pp, 342-365.
Ventosa, A., Nieto, J. and Oren, J.,1998, ABiology of moderately halophilic aerobic bcteriaMicrobiol, J. Mol. Biol., vol. 62, pp.504-544.
Alinajafi, S., and Rahimpour, F. TPH Bioremediation by Microbial Consortium Isolated from Oil Contami-nated Soil", 6th International Chemical Engineering Con-gress & Exhibition.2009.
_||_
- Ansari, M. I. andMalik, A., 2007. Biosorption of nickel and cadmium metal resistant bacterial isolates from agricultural soil irrigated within dustrial waste water, J. Bioresour. Technol,vol.98, pp.3149–3153.
- Mair, R.M. Papper, L.L., Gebra, C. P,. 2000.EnviromentalMicrobiology. ACADEMICPress, chpter17,403-423.
- Rainbow, P. S. and White, S.L., ,1989. Comparative strategies of heavy metalaccumulation by crustaceans: zinc, copperand cadmium in adecapod. an amphipodandabarnacle. J. Hydrobiolo, Vol.174, pp.245-262.
- Patel, J.S., Patel, PC., and Kalia K. (2006). Isolation and characterization of nickel uptake by nickel resistant bacterial isolate. J.Bi. Environ. Sci, vol., 19(4), pp.297-301.
- Manasi, A., Rajesh, V., Krishna Kumar, A. and Rajesh, N. ,2014). Biosorption of cadmium using anovel bacterium isolated from an electronic industry effluent, J. Chem. Eng., vol.235, pp.176–185.
Desguin, B., Goffin, P., Viaene, E., Kleerebezem, M., Martin-Diaconescu, V., Maroney, M.J., Declercq, J. P., Soumillion, P. & Hols, P., 2014.Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat. Commun. Vol. 5, pp. 3615.
Gasemi, S. ,2006. Biosorption of copper from waste water by activated carbon preparealge sargssum spand gracilaria, J. corticata, vol. 11, pp.3-
Benavides, M.P. Gallego, S.M. Tomaro, M. L, 2005.ACADMIUM toxicity in plants Braz.J. of plant physiol, vol .171, pp.21-34.
Hetzer, A., Daughney, C.J. and Morgan, H.W. ,2006. Cadmium ion Biosorpation by thermophilic bacteria Geobacillus stear other mophilusand G. therm ocatenulatus. J. Appl. Environ. Microbiol, vol .72, pp.4020-4027.
Allun, H.K., Rond, S. R., Settalluri, V.S., Bondili, J.S. and Venkateshwar, S.V., 2007.Biosorption Aneco friendly alternative forheavymetal removal, African.J. Biotecchnol, Vol. 6, pp.2924-2931.
Quintelas, C., Fernandes, B., Castro J., Figueiredo, H., TavaresT., 2008.Biosorption of Cr(VI) by a Bacillus coagulansbiofilm supported on granular activated carbon. J. Chem.Engineer, Vol.136, pp.195–203.
Mahrasbi, M.R., Farahmsndkia Z., 2002.Heavy Metal Removal from Aqueous Solution by Adsorptionon Modified Banana Shell. J. Health and Environ.1: (In Persian).
Kuiper, I., Lagendij, EL., Bloemberg, G.V., and Lugtenberg BJJ, 2004. Rhizoremediation: Abeneficial plant-microbe interaction. J. MolPlant-Microbe Int1.vol.7(1), pp. 6-15.
Quintelas, C., Fonseca, B., Silva, B., Figueiredo, H., Tavares, T.,2009. Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacterviscosus supported on GAC. J. Bioresour. Technolo., vol.100, pp. 220–226.
Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, et al., 2015. Bioremediation of heavy metals from soiland aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, Vol.7(2), pp.2189-1292.
Kelly, DJ., Budd, K., and Lefebvre, DD., 2006.The biotransformation of mercury in pH statcultures of microfungi.J. Botany, vol.84(2), pp. 60-254.
Suresh Kumar, K., Dahms H-U, Won E-J., Lee J-S., and Shin K-H., 2015.Microalgae promising tool for heavy metalremediation. J. Ecotoxicol. Environ. Safety, vol.113, pp.52-329.
Sanchez-porro, C., Martin, S., Mellado, E., and Ventosa, A., 2003. Diversity of Moderately Halophilic Bacteria Producing Extracellular Hydrolytic Enzymes, J. Appl. Microbiol., vol.94, pp.295-300
Margesin R. and Schinner F., 2001.Potential of halotolerant and halophilic Microorgnisms for biotechnology. J. Extremophile., vol.5, pp. 73-83.
Ventosa, A., Nieto, J. and Oren J. (1998). A Biology of moderately halophilic aerobic bcteria. Microbiol, J. Mol. Biol., vol. 62, pp.504-544.
Vijayaraghavan, K., and Yun, Y. ,2008. Bacterial biosorbents and biosorption. J. Bioethanol.Adv., vol, 26(1), pp. 266-291.
Pradhan, S and L.C., Rai., 2001. Biotechnological potential of Microcystis sp. In Cu, Zn and Cd biosorption from nsingle and multimetallic systemes. J. Biometals, vol.14, pp: 67-74.
Iyer A., Mody, K. and Jha, B.,2005. Biosorption of heavy metals by a moderately halophiliceubacteria, Appl. Environ. Microbiol., vol.55, pp.2385-2390.
Azza, A.A., Wesam, A.H. Hedayat, M.S., Ghada, A.A.F., 2009.Biosorpationof some heavy metal ions using bacterial species isolated from agriculture waste water drains in Egypt. J. Appl. Sci. Research, vol.5(4), pp.372-383.
Abbas, S., Ismail, I., Mostafa, T., and Sulaymon, A. (2014). Biosorption of Heavy Metals: A Review. J.Chem. Sci. Technolo., vol.4, pp.74- 102.
Wang, J. and Chen, C. (2009). Biosorbents for heavy metals removal andtheir future, J. Biotechnol. Adv. Vol.27, pp.195-226.
Sendstatein, S. wanell, P.J, LeeK. R., and Mcdonagh, M., Field evaluation fmarineoil spillbioremediation, J. Microbiol. Rev. 1982, vol. 60, pp, 342-365.
Ventosa, A., Nieto, J. and Oren, J.,1998, ABiology of moderately halophilic aerobic bcteriaMicrobiol, J. Mol. Biol., vol. 62, pp.504-544.
Alinajafi, S., and Rahimpour, F. TPH Bioremediation by Microbial Consortium Isolated from Oil Contami-nated Soil", 6th International Chemical Engineering Con-gress & Exhibition.2009.