مقایسه راندمان جذب و رهاسازی نیترات توسط میکرو-زئولیتهای کلینوپتیلولیت ایرانی و خارجی اصلاح شده با سورفکتانت کاتیونی هگزادسیلتریمتیلآمونیم
محورهای موضوعی :
آلودگی های محیط زیست (آب، خاک و هوا)
فریبا نعمتی شمس آباد
1
,
حسین ترابی گل سفیدی
2
,
امیر محمد ناجی
3
1 - دانشآموخته کارشناسی ارشد گروه علوم خاک، دانشگاه شاهد، تهران، ایران
2 - استادیار گروه علوم خاک، دانشگاه شاهد، تهران، ایران. *(مسئول مکاتبات)
3 - استادیار گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه شاهد، تهران، ایران.
تاریخ دریافت : 1395/10/25
تاریخ پذیرش : 1397/10/30
تاریخ انتشار : 1400/01/01
کلید واژه:
رس,
زئولیت آلی,
گنجایش تبادل کاتیونی بیرونی زئولیت,
چکیده مقاله :
زمینه و هدف: رس های آلی از قرار گرفتن نوعی سورفکتانت کاتیونی در سطح و یا بین لایه های رس طبیعی یا سنتز شده ایجاد و کاربردهای وسیعی دارند. این تحقیق با هدف بررسی مقایسه راندمان جذب و رهاسازی نیترات توسط زئولیت طبیعی ایرانی (سمنان) و نمونه سنتز شده ی خالص وارداتی (Fluka-96096) اصلاح شده صورت گرفته است.روش بررسی: ذرات میکرو-زئولیت کلینوپتیلولیت ایرانی و خارجی با استفاده از روش سانتریفیوژ جدا و سپس با استفاده از سورفکتانت هگزادسیل تری متیل آمونیوم بروماید (HDTMA-Br) به میکرو-زئولیت آلی تبدیل شدند. مورفولوژی و ساختار کانی زئولیت مورد مطالعه با استفاده از روش های XRD ، EDX ، SEM و AFM مورد بررسی و شناسایی قرار گرفت. راندمان جذب نیترات در دو سطح سورفکتانت 100و200 درصد گنجایش تبادل کاتیونی بیرونی (ECEC)در سطوح مختلف غلظت اولیه نیترات انجام گرفت. برای بررسی میزان ثبات نیترات جذب شده توسط زئولیت آلی، فرایند رهاسازی در سطح سورفکتانت 200 درصد ECEC در دو غلظت نیترات در زمان های مختلف به صورت فاکتوریل در قالب طرح پایه ی کاملاً تصادفی انجام شد.یافته ها: راندمان جذب و پالایش نیترات در سطح سورفکتانت 200 درصد ECEC برای زئولیت های آلی Fluka در غلظت های اولیه 3، 6، 14، 20 و 30 میلی مولار نیترات به ترتیب، 77، 63، 48، 37 و 30 درصد می باشد. در حالی که این راندمان برای میکرو-زئولیت آلی ایرانی به ترتیب، 75، 67، 54، 50 و 33 درصد و اختلاف آن با زئولیت فلوکا در سطح احتمال یک درصد معنی دار نمی باشد. میانگین درصد رهاسازی میکرو-زئولیت آلی ایرانی 21 تا 31 درصد و در میکرو-زئولیت فلوکا 17تا 34 درصد است.بحث و نتیجه گیری : جذب نیترات تحت تاثیر غلظت های اولیه نیترات و سطوح متفاوت سورفکتانت قرار دارد. بهترین سطح سورفکتانت با بالاترین میزان جذب، سطح سورفکتانت 200 درصد ECEC می باشد. نتایج این تحقیق نشان داد که میکرو-زئولیت فلوکا نه تنها برتری قابل توجهی نسبت به زئولیت طبیعی ایران ندارد، بلکه در برخی موارد نوع ایرانی آن، برتری های اندکی در جذب و رهاسازی نیترات دارد.
چکیده انگلیسی:
Background and objective: Organocalys are modified by cationic surfactant on surface and between layers of natural or synthesis clays and widely are used. The objective of this study were comparison of absorption efficiency and release of nitrate in aqueous solutions by modified Iranian natural zeolite-clinoptilolite (Semnan) and synthesis zeolite of Fluka-96096.Material and Methods: The Iranian and Fluka-96096 micro-zeolite (clinoptilolite) was separated by centrifuge method. The micro-zeolites were first modified by hexa-decyltrimethyl-ammonium (HDTMA), a cationic surfactant. Structure and morphology of zeolites were determined XRD, SEM, EDX and AFM. In this study, adsorption efficiency in initial concentrations of nitrate by modified zeolite with surfactant loading of 100 and 200% external cation exchange capacity (ECEC) was investigated in a completely randomized factorial design. The nitrate release as affected by time at 4 and 14 mM of nitrate in surfactant loading 200% ECEC were also evaluated.Results: The results showed that absorption efficiency of nitrate by Fluka micro-organozeolite with surfactant loading of 200% ECEC in 3, 6, 20 and 30 mM nitrate were 77, 63, 48, 37 and 30% respectively, whereas, by Iranian micro-organ zeolite were 75, 67, 54, 50 and 33% respectively and no significant together (p≤0.01). The mean of nitrate release were 31 to 21%, in Iranian micro-organ zeolite, whereas for Fluka micro-organ zeolite were 17 to 34%.Discussion and Conclusion: The adsorption efficiency of nitrate was significant by initial nitrate concentration and surfactant’s level. The best adsorption efficiency of nitrate occurred at 200% of ECEC. The results of this research showed that the micro-organ zeolite of Fluka-96096 not only is not better than Iranian micro-zeolite, but also, Iranian micro-organ zeolite have been better for nitrate absorption and release in some cases.
منابع و مأخذ:
Islam, M., and Patel R., 2010. Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination, vol. 256, pp.120–128.
Malekian, R., Abedi-Koupai, J., and Eslamian, S. S. 2013. Ion-Exchange Process for nitrate removal and release using surfactant modified zeolite. Sci. and Technol. Agric. and Natur. Resour., Water and Soil Sci, 190-202. (In Persian).
Azam, N., Eslamian, S., Gheisari, M., and Abedi-Koupani, J. 2013. Reduce nitrate from aqueous solution using surfactant-modified bentonite. 1st national conference planning, conservation, environmental protection and sustainable development, 3 Dec., Shahid Mofateh University of Hamadan. (In Persian).
Sharafi, M., Bazigar, S., Tamizifar, M., Nemati, A., and Validi, M. 2009. The use of nanoclay as an absorbent mineral materials. 5th Student Conference on Nanotechnology, 29-31 May, Tehran University of Medical Sciences. (In Persian).
Trigo, C., Celisx, G., Hermosín, M., and Cornejo, J., 2009. Organoclay-based Formulations to Reduce the Environmental Impact of the Herbicide Diuron in Olive Groves. Soil Science Society of America journal, vol.73 (5), and pp.1652-1657.
Jhamnani, B., and Singh, S., 2009. Evaluation of Organoclays for Use in Landfill Liners. The Open Waste Management Journal, vol.2, pp.37-42.
Kittrick, J.A., and Hope, E.W., 1963. A procedure for particle size separations of soils for x-ray diffraction analysis. Soil science, vol. 96(5), pp.319-325.
Rhoades, J. D., 1982. Cation-exchange capacity. pp. 149-157. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Ming, D., and Dixon, J.B., 1987. Quantitative determination of clinoptilolite in. clay and clay minerals, vol. 32(6), pp.463-468.
Wang, Y., Liu, S., Xu, Z., Han, T., Chuan, S., and Zhu, T., 2007. Ammonia removal from leachate solution using natural Chinese clinoptilolite. Journal of Hazardous Materials, vol. B136, pp. 735-740.
Armstrong, G.A., 1963. Determination of intrate in water by ultraviolet Spectrophotometry. Analyticaal chemistry, vol. 35, pp.1292.
Bhattacharya, S., and Aadhar, M., 2014. Studies on Preparation and analysis of Organoclay Nano Particles. Research Journal of Engineering Sciences, vol. 3(3), pp. 10-16.
Arabi, F., Asgari, G., 2013. Characteristics of the authors Review of the process of nitrate removal from aqueous solution through hexadecyltrimethylammonium bromide surfactant modified zeolite. 16th National Conference on Environmental Health.Tabriz. (In Persian).
Schick, J., Caullet, P., Paillaud, J., and Callarec, C., 2011. Nitrate sorption from water on a Surfactant-Modified Zeolite. Fixed-bed column experiments. Microporous and Mesoporous Materials, vol. 142(2–3), pp.549–556.
Cho, H. H., Lee, T., Hwang, S.J., and Park, J.W., 2005. Iron and organo-bentonite for the reduction and sorption. Chemosphere, vol.58, pp.103–108.
Iran Mining Network (imico), “Statistics on the production, import and export of non-metallic minerals in Iran in 2010”, http://imico.org/fa/pages/non-metallic-1389. (In Persian).
Boettinger, J.L., and Ming, D.W., 2002. Zeolite, pp. 586-610. In J. B. Dixon and D. G. Schulze (ed.) Soil mineralogy with environmental application. Soil Science Society of America, Inc. Madison, Wisconsin, USA.
Malla, P.B., 2002. Vermiculite. pp. 501-530. In J. B. Dixon and D. G. Schulze (ed.) Soil mineralogy with environmental application. Soil Science Society of America, Inc. Madison, Wisconsin, USA.
Li, Z., 2003. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous and Mesoporous Materials, vol.61, pp.181-188.
Seliem, M.K., Komarneni, S., Byrne, T., Cannon, F.S., Shahien, M.G., Khalil, A.A., and Abdel-Gaid I.M., 2013. Removal of nitrate bysynthetic organosilicas and organoclay:Kinetic and isotherm studies. Separation & Purification Technology, vol.110, pp. 181-187.
Rafiei, H., Shirvani, M. 2014. Lead absorption of water solutions by adsorbent polymer clay nanocomposite. 1thNational Conference on Sustainable Management of Soil and Environment Resources. Shshid Bahonar University of Kerman. (In Persian).
Tillman, Jr., F.S. Bartelt-Hunt. , J. Smith, and G. Alther. 2004. Evaluation of an Organoclay, an Organoclay-AnthraciteBlend, Clinoptilolite, and Hydroxy-Apatite as Sorbents for Heavy Metal Removal from Water. Environmental Contamination and Toxicology, vol. 72, pp. 1134–1141.
Gitipour,S., Abolfazlzadeh, M., Givechi, S. 2010. The feasibility of MTBE adsorption from groundwater using modified clay. Journal of Environmental Science and Technology, Vol. 10, pp. 1-9. (In Persian).
_||_
Islam, M., and Patel R., 2010. Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination, vol. 256, pp.120–128.
Malekian, R., Abedi-Koupai, J., and Eslamian, S. S. 2013. Ion-Exchange Process for nitrate removal and release using surfactant modified zeolite. Sci. and Technol. Agric. and Natur. Resour., Water and Soil Sci, 190-202. (In Persian).
Azam, N., Eslamian, S., Gheisari, M., and Abedi-Koupani, J. 2013. Reduce nitrate from aqueous solution using surfactant-modified bentonite. 1st national conference planning, conservation, environmental protection and sustainable development, 3 Dec., Shahid Mofateh University of Hamadan. (In Persian).
Sharafi, M., Bazigar, S., Tamizifar, M., Nemati, A., and Validi, M. 2009. The use of nanoclay as an absorbent mineral materials. 5th Student Conference on Nanotechnology, 29-31 May, Tehran University of Medical Sciences. (In Persian).
Trigo, C., Celisx, G., Hermosín, M., and Cornejo, J., 2009. Organoclay-based Formulations to Reduce the Environmental Impact of the Herbicide Diuron in Olive Groves. Soil Science Society of America journal, vol.73 (5), and pp.1652-1657.
Jhamnani, B., and Singh, S., 2009. Evaluation of Organoclays for Use in Landfill Liners. The Open Waste Management Journal, vol.2, pp.37-42.
Kittrick, J.A., and Hope, E.W., 1963. A procedure for particle size separations of soils for x-ray diffraction analysis. Soil science, vol. 96(5), pp.319-325.
Rhoades, J. D., 1982. Cation-exchange capacity. pp. 149-157. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Ming, D., and Dixon, J.B., 1987. Quantitative determination of clinoptilolite in. clay and clay minerals, vol. 32(6), pp.463-468.
Wang, Y., Liu, S., Xu, Z., Han, T., Chuan, S., and Zhu, T., 2007. Ammonia removal from leachate solution using natural Chinese clinoptilolite. Journal of Hazardous Materials, vol. B136, pp. 735-740.
Armstrong, G.A., 1963. Determination of intrate in water by ultraviolet Spectrophotometry. Analyticaal chemistry, vol. 35, pp.1292.
Bhattacharya, S., and Aadhar, M., 2014. Studies on Preparation and analysis of Organoclay Nano Particles. Research Journal of Engineering Sciences, vol. 3(3), pp. 10-16.
Arabi, F., Asgari, G., 2013. Characteristics of the authors Review of the process of nitrate removal from aqueous solution through hexadecyltrimethylammonium bromide surfactant modified zeolite. 16th National Conference on Environmental Health.Tabriz. (In Persian).
Schick, J., Caullet, P., Paillaud, J., and Callarec, C., 2011. Nitrate sorption from water on a Surfactant-Modified Zeolite. Fixed-bed column experiments. Microporous and Mesoporous Materials, vol. 142(2–3), pp.549–556.
Cho, H. H., Lee, T., Hwang, S.J., and Park, J.W., 2005. Iron and organo-bentonite for the reduction and sorption. Chemosphere, vol.58, pp.103–108.
Iran Mining Network (imico), “Statistics on the production, import and export of non-metallic minerals in Iran in 2010”, http://imico.org/fa/pages/non-metallic-1389. (In Persian).
Boettinger, J.L., and Ming, D.W., 2002. Zeolite, pp. 586-610. In J. B. Dixon and D. G. Schulze (ed.) Soil mineralogy with environmental application. Soil Science Society of America, Inc. Madison, Wisconsin, USA.
Malla, P.B., 2002. Vermiculite. pp. 501-530. In J. B. Dixon and D. G. Schulze (ed.) Soil mineralogy with environmental application. Soil Science Society of America, Inc. Madison, Wisconsin, USA.
Li, Z., 2003. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous and Mesoporous Materials, vol.61, pp.181-188.
Seliem, M.K., Komarneni, S., Byrne, T., Cannon, F.S., Shahien, M.G., Khalil, A.A., and Abdel-Gaid I.M., 2013. Removal of nitrate bysynthetic organosilicas and organoclay:Kinetic and isotherm studies. Separation & Purification Technology, vol.110, pp. 181-187.
Rafiei, H., Shirvani, M. 2014. Lead absorption of water solutions by adsorbent polymer clay nanocomposite. 1thNational Conference on Sustainable Management of Soil and Environment Resources. Shshid Bahonar University of Kerman. (In Persian).
Tillman, Jr., F.S. Bartelt-Hunt. , J. Smith, and G. Alther. 2004. Evaluation of an Organoclay, an Organoclay-AnthraciteBlend, Clinoptilolite, and Hydroxy-Apatite as Sorbents for Heavy Metal Removal from Water. Environmental Contamination and Toxicology, vol. 72, pp. 1134–1141.
Gitipour,S., Abolfazlzadeh, M., Givechi, S. 2010. The feasibility of MTBE adsorption from groundwater using modified clay. Journal of Environmental Science and Technology, Vol. 10, pp. 1-9. (In Persian).