بررسی قابلیت انتقال کاربری اراضی و پوشش زمین با استفاده از روشهای رویه یادگیری بر مبنای نمونه وزنی مشابهت، رگرسیون لجستیک و ژئومد (مطالعه موردی: حوزه بسطام شهرستان سلسله)
محورهای موضوعی : منابع طبیعیسهیلا ناصری راد 1 , حامد نقوی 2 , جواد سوسنی 3 , سیداحمدرضا نورالدینی 4 , ساسان وفایی 5
1 - دانشآموخته کارشناسی ارشد مهندسی جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان.
2 - استادیار گروه مهندسی جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان. *(مسوول مکاتبات)
3 - دانشیار گروه مهندسی جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان.
4 - دانشآموخته دکتری جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه گیلان.
5 - دانشآموخته دکتری جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان.
کلید واژه: پوشش زمین, سنجش از دور, زنجیره مارکوف, مدلسازی, کاربری اراضی,
چکیده مقاله :
زمینه و هدف: ارزیابی و برآورد قابلیت انتقال با صحت بالا، یک گام مهم در روند مدلسازی و پیشبینی تغییرات کاربری اراضی و پوشش زمین است. هدف از این پژوهش، بررسی قابلیت تغییرات کاربری اراضی و پوشش زمین با استفاده از روشهای رویه یادگیری بر مبنای نمونه وزنی مشابهت، رگرسیون لجستیک و ژئومد است. روش بررسی: نقشههای کاربری اراضی و پوشش زمین مربوط به یک دوره زمانی 30 ساله (1364 تا1394) با استفاده از تصاویر ماهوارههای لندست 5 و 8 تهیه شد. مدلسازی قابلیت انتقال کاربری اراضی و پوشش زمین با استفاده از روشهای رویه یادگیری بر مبنای نمونه وزنی مشابهت، رگرسیون لجستیک و ژئومد و متغیرهای تاثیرگذار در روند تغییرات صورت گرفت. میزان صحت نتایج به دست آمده از مدلها با استفاده از نقشه واقعیت زمینی تعیین شد. مراحل اجرایی این پژوهش در بازه زمانی سالهای 1395 تا 1396 انجام شد. یافتهها: میزان ضریب کاپا برای روشهای رویه یادگیری بر مبنای نمونه وزنی مشابهت، رگرسیون لجستیک و ژئومد به ترتیب 84/0، 76/0 و 67/0 محاسبه شد. بررسی نقشههای پیشبینی شده برای سال 1409 با استفاده از روش رویه یادگیری بر مبنای نمونه وزنی مشابهت و زنجیره مارکوف نشان داد که مساحت مناطق مسکونی، باغات و اراضی کشاورزی روند افزایشی و مساحت اراضی بایر، جنگلها، مراتع و منابع آبی روند کاهشی خواهند داشت. بحث و نتیجهگیری: در نهایت نتایج حاکی از دقت نسبتاً بالای سه روش در برآورد قابلیت تغییرات کاربری اراضی و پوشش زمین است پاما با توجه به ضرایب کاپای به دست آمده، دقت روش رویه یادگیری بر مبنای نمونه وزنی مشابهت بیشتر از دو روش دیگر بوده است.
Background and Objective: Assessing and estimating the high-accuracy transmission potential is an important step in the process of land use and land cover changes modeling and predicting. The aim of this study is to investigate the transmission potential of land use and land cover changes using Similarity Weighted Instance based Learning, Logistic regression and Geomod methods. Method: The land use and land cover maps for a 30-year period (1985-2015) were prepared using Landsat 5 and 8 satellite imagery. Land use and land cover transmission potential modeling was done using Similarity Weighted Instance based Learning, Logistic regression and Geomod methods and effective variables in the process of change. The accuracy of the results obtained from the models was determined by comparing with ground reality map for mentioned year. Findings: The Kappa coefficient of Similarity Weighted Instance based Learning, Logistic regression and Geomod were 0.84, 0.76 and 0.67, respectively. The investigating predicted maps for 2030 prepared by Similarity Weighted Instance based Learning and Markov chain showed that the area of residential areas, gardens and agricultural lands is increasing and the area of bare land, forests, pastures and water resources will have a decrease trend. Discussion and Conclusion: Finally, the results indicate a relatively high accuracy of three methods in estimating the transmission potential for land use and land cover changes, but according to the kappa coefficients, the accuracy of Similarity Weighted Instance based Learning method more than the other two methods.
- Mas, J.F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., Houet, T., 2014, Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, pp 94-111.
- Parsamehr, K. Gholamalifard, M., 2016, Comparing Empirical Transition Potential Modeling Procedures and Their Implication as Baseline of REDD Projects in Mazandaran Province, The 1st National Conference on Geospatial Information Technology, pp 1-17. (In Persian)
- Kamyab, H., Salman Mahiny, A., Hossini, S., Gholamalifard, M. A., 2010, Knowledge-Based Approach to Urban Growth Modeling in Gorgan City Using Logistic Regression. Journal of Environmental Studies, 36(54), pp 89-96 (In Persian).
- Sangermano, F., Eastman, J.R., Zhu, H., 2010, Similarity weighted instance‐based learning for the generation of transition potentials in land use change modeling, Journal of Transactions in GIS, 14, pp 569-580.
- Mahiny, A. S., Turner, B. J., 2011, Modeling past change in vegetation through remote sensing and GIS: A comparison of neural network and logistic regression methods. Geocomputation, pp 1-24.
- Azizi Ghalati, S., Rangzan, K., Taghizadeh, A., Ahmadi, S., 2014, LCM Logistic regression modelling of land-use changes in Kouhmare Sorkhi, Fars province. Iranian Journal of Forest and Poplar Research, 22(4), pp 585-596. (In Persian)
- Moradi, Z., Mikaeili Tabrizi, A., Gholamalifard, M., 2015, Modeling and prediction of agricultural development using artificial neural network algorithms, Logistic regression and Similarity Weighted Instance based Learning, Case study: Gorganroud watershed, Golestan province. The national conference on horizon scanning of the earth with an emphasis on climate, agriculture and the environment, Shiraz, pp 1-8. (In Persian)
- Aliyo Bununu, Y., 2017, Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (Simweight) to simulate urban expansion: international journal of sciences, pp 1-21.
- Adhikari, S., Fik, T., Dwivedi, P., 2017, Proximate causes of land use and land cover change in Bannerghatta national park: a spatial statistical model, pp 1-23.
- Yaghoub Zadeh, B., 2014, Climate analysis of Aleshtar region, Selseleh division, Lorestan. Proceedings of the Meteorological Services of Lorestan Province, pp 1-17. (In Persian)
- Naseri, S., Naghavi, H., Soosani, J., Nouredini, A., 2019. Modeling the spatial changes of Zagros forests using satellite imagery and LCM model (Case study: Bastam, Selseleh). Geography and Development Iranian Journal, 17(54), pp 107-120.
- Pijanowski, B. C., Brown, D. G., Shellito, B. A., Manik, G. A., 2014, Using neural networks and GIS to forecast land use changes: a land transformation model Computers environment and urban systems. 26 (6), pp 553-575.
- Echeverria, C., Coomes, D. A., Hall, M., Newton, A. C., 2012, Spatially explicit model to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile: 212 (3-4), pp 439-449.
- Cabral, P., Zamyatin, A., 2006, Three land change models for urban dynamics analysis in Sintra-Cascais area: Proceedings of First Workshop of the EARSEL SIG on Urban Remote Sensing, p 38.
- Kavyan, A., Zargosh, Z., Jaffaryan Jolodar, Z., Darabi, H., 2017, Land use Changes Modelling Using Logistic Regression and Markov Chain in the Haraz Watershed. Journal of Natural Environment, 70(2), pp 397-411. (In Persian)
- Griselda‚ V. Q.‚ Solis-Moreno‚ R.‚ Pompa-Garcia͵M.‚ Villarreal-Guerrero‚ F.‚ Pinedo-Alvarez‚ C.‚ Pinedo-Alvarez‚ A., 2016, Detection and Projection of Forest changes by Using the Markov Chain Model and Cellular Automata: Vincenzo Torretta. 8(236), pp 1-13.
- Laura, C., Schneider, R., Gil Pontius, J. R., 2014, Modeling land use change in the Ipswich watershed Massachusetts USA: Agriculture ecosystem and environment. (85), PP 83-94.
- Schulz, J. J., Cayuela, L., Rey, J. M., Schroder, B., 2011, Factors influencing vegetation cover nchange in mediterranean central chile: Applied vegegation science. 14 (4), pp 571-582.
- Mohammami, M., Amiri, M., Dastoorani, J., 2016, Modeling land use changes of Ramin city in the Golestan province, The Journal of Spatial Planning, 19(4), pp 141-158. (In Persian)
_||_
- Mas, J.F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., Houet, T., 2014, Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, pp 94-111.
- Parsamehr, K. Gholamalifard, M., 2016, Comparing Empirical Transition Potential Modeling Procedures and Their Implication as Baseline of REDD Projects in Mazandaran Province, The 1st National Conference on Geospatial Information Technology, pp 1-17. (In Persian)
- Kamyab, H., Salman Mahiny, A., Hossini, S., Gholamalifard, M. A., 2010, Knowledge-Based Approach to Urban Growth Modeling in Gorgan City Using Logistic Regression. Journal of Environmental Studies, 36(54), pp 89-96 (In Persian).
- Sangermano, F., Eastman, J.R., Zhu, H., 2010, Similarity weighted instance‐based learning for the generation of transition potentials in land use change modeling, Journal of Transactions in GIS, 14, pp 569-580.
- Mahiny, A. S., Turner, B. J., 2011, Modeling past change in vegetation through remote sensing and GIS: A comparison of neural network and logistic regression methods. Geocomputation, pp 1-24.
- Azizi Ghalati, S., Rangzan, K., Taghizadeh, A., Ahmadi, S., 2014, LCM Logistic regression modelling of land-use changes in Kouhmare Sorkhi, Fars province. Iranian Journal of Forest and Poplar Research, 22(4), pp 585-596. (In Persian)
- Moradi, Z., Mikaeili Tabrizi, A., Gholamalifard, M., 2015, Modeling and prediction of agricultural development using artificial neural network algorithms, Logistic regression and Similarity Weighted Instance based Learning, Case study: Gorganroud watershed, Golestan province. The national conference on horizon scanning of the earth with an emphasis on climate, agriculture and the environment, Shiraz, pp 1-8. (In Persian)
- Aliyo Bununu, Y., 2017, Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (Simweight) to simulate urban expansion: international journal of sciences, pp 1-21.
- Adhikari, S., Fik, T., Dwivedi, P., 2017, Proximate causes of land use and land cover change in Bannerghatta national park: a spatial statistical model, pp 1-23.
- Yaghoub Zadeh, B., 2014, Climate analysis of Aleshtar region, Selseleh division, Lorestan. Proceedings of the Meteorological Services of Lorestan Province, pp 1-17. (In Persian)
- Naseri, S., Naghavi, H., Soosani, J., Nouredini, A., 2019. Modeling the spatial changes of Zagros forests using satellite imagery and LCM model (Case study: Bastam, Selseleh). Geography and Development Iranian Journal, 17(54), pp 107-120.
- Pijanowski, B. C., Brown, D. G., Shellito, B. A., Manik, G. A., 2014, Using neural networks and GIS to forecast land use changes: a land transformation model Computers environment and urban systems. 26 (6), pp 553-575.
- Echeverria, C., Coomes, D. A., Hall, M., Newton, A. C., 2012, Spatially explicit model to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile: 212 (3-4), pp 439-449.
- Cabral, P., Zamyatin, A., 2006, Three land change models for urban dynamics analysis in Sintra-Cascais area: Proceedings of First Workshop of the EARSEL SIG on Urban Remote Sensing, p 38.
- Kavyan, A., Zargosh, Z., Jaffaryan Jolodar, Z., Darabi, H., 2017, Land use Changes Modelling Using Logistic Regression and Markov Chain in the Haraz Watershed. Journal of Natural Environment, 70(2), pp 397-411. (In Persian)
- Griselda‚ V. Q.‚ Solis-Moreno‚ R.‚ Pompa-Garcia͵M.‚ Villarreal-Guerrero‚ F.‚ Pinedo-Alvarez‚ C.‚ Pinedo-Alvarez‚ A., 2016, Detection and Projection of Forest changes by Using the Markov Chain Model and Cellular Automata: Vincenzo Torretta. 8(236), pp 1-13.
- Laura, C., Schneider, R., Gil Pontius, J. R., 2014, Modeling land use change in the Ipswich watershed Massachusetts USA: Agriculture ecosystem and environment. (85), PP 83-94.
- Schulz, J. J., Cayuela, L., Rey, J. M., Schroder, B., 2011, Factors influencing vegetation cover nchange in mediterranean central chile: Applied vegegation science. 14 (4), pp 571-582.
- Mohammami, M., Amiri, M., Dastoorani, J., 2016, Modeling land use changes of Ramin city in the Golestan province, The Journal of Spatial Planning, 19(4), pp 141-158. (In Persian)