شناسایی و الگوی پراکنش دیاتومه های بنتیک و مونوفیلتیک "راسته های Surirellales و Rhopalodiales" در خور مصب لافت-خمیر
محورهای موضوعی : بیولوژی دریا
نفیسه حسنی
1
,
رضوان موسوی ندوشن
2
*
,
سید محمد رضا فاطمی
3
,
افشین دانه کار
4
,
پرگل قواممصطفوی
5
1 - دانشجوی دکتری، دانشکده موضوعی کشاورزی، آب، غذا و فراسودمندها، واحد علوم و تحقیقات، دانشگاه آز اد اسلامی، تهران، تهران، ایران.
2 - دانشیار، دانشکده علوم وفنون دریایی، واحد تهران شمال، دانشگاه آز اد اسلامی، تهران، تهران، ایران. *(مسوول مکاتبات)
3 - استادیار، دانشکده موضوعی کشاورزی، آب، غذا و فراسودمندها، واحد علوم و تحقیقات، دانشگاه آز اد اسلامی، تهران، تهران، ایران.
4 - دانشیار، دانشکده منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران.
5 - دانشیار، دانشکده موضوعی کشاورزی، آب، غذا و فراسودمندها، واحد علوم و تحقیقات، دانشگاه آز اد اسلامی، تهران، تهران، ایران.
کلید واژه: میکروفیتوبنتوز, خور مصب, لافت/خمیر, دیاتومه های استوانه ای, راف, مونوفیلتیک, Surirellales, Rhopalodiales.,
چکیده مقاله :
زمینه و هدف: در میان دیاتومه های استوانه ای شکلRaphid Pennate) ) و براساس مبانی مورفولوژیک و ژنتیک دو راستهSurirellales وRhopalodiales ، با یکدیگر هم نیا و مونوفیلتیک بوده، گروه هایی بسیار بزرگ و متنوع را در اکوسیستم های آبی مختلف مانند آب های شیرین، خورها ، مصب ها ، آب های دریایی و به ویژه در زیستگاه های بنتیک تشکیل می دهند. در این تحقیق، به منظور شناخت کامل و دقیق از ساختار جمعیت دو راسته Surirellales وRhopalodiales ، نمونه برداری از سطح رسوبات در سه منطقه دلتایی، ساحلی و جزیره ای در مصب لافت-خمیر واقع در جزیره قشم انجام یافت.
روش بررسی: در هر منطقه سه ایستگاه انتخاب شد. نمونه برداری از پارامترهای آب (درجه حرارت، شوری، پ هاش، اکسیژن محلول، کدورت، هدایت الکتریکی و پارامترهای زیستی (میکروفیتوبنتوزها) در دو فصل سرد و گرم (فصل زمستان 1396 و فصل تابستان 1397) و در زمان جزر انجام گرفت.
یافته ها: براساس نتایج این مطالعه، از این دو راسته، 10 گونه در 6 جنس شناسایی شدند که تعداد 9 گونه متعلق به راسته Surirellales و تنها یک گونه متعلق به راسته Rhopalodiales بود. جنس Surirella با 4 گونه بیشترین تنوع گونه ای را به خود اختصاص داد و Surirella sp. با بیشترین تراکم به عنوان گونه غالب در منطقه جزیره ای و فصل سرد سال مشخص گردید.
بحث و نتیجه گیری: نتایج آنالیزهای آماری که جهت بررسی روابط بین پارامترهای زیستی و محیطی انجام شد، نشان داد که جمعیت میکروفیتوبنتوزهای راسته Surirellales، دارای پراکنش یکنواخت در مناطق دلتایی، جزیره ای، ساحلی و در فصول مورد مطالعه بودند (05/0<P) در حالی که اختلاف این جمعیت در راسته Rhopalodiales در منطقه جزیره ای با مناطق ساحلی و دلتایی معنادار بود (05/0>P) و دو راسته Surirellales و Rhopalodiales در فصول گرم نسبت به فصول سرد سال، تنوع بیشتری را در مناطق دلتایی و جزیره ای نشان دادند. همچنین بر اساس نتایج آنالیز CAP تغییرات پارامترهای دما و شوری مهمترین عوامل اثرگذار بر پراکنش گونه های solea Cymatopleura، Cymatopleura elliptica، Campylodiscus sp.، Surirella tenera، Surirella linearis، Surirella pinniger در منطقه دلتایی و تغییرات پارامترهای اکسیژن محلول مهمترین عامل اثرگذار بر پراکنش گونه Entomoneis ornata در منطقه جزیره ای مشخص گردید. و در نهایت گونه هایSurirella SP. ، Stenopterobia sigmatella به همراه Rhopalodia gibba به عنوان گونه های شاخص آبهای دارای شوری کمتر در منطقه جزیره ای مشخص شدند.
Background and Objective: Among the elongate diatoms (Raphid Pennate) and based on morphological and genetic principles, two orders “Surirellales and Rhopalodiales” are monophyletic and form very large and diverse groups in different aquatic ecosystems such as freshwater, estuaries, seawater, and especially benthic habitats. In the present study, to fully and accurately understand the community structure of the two orders Surirellales and Rhopalodiales, sediment sampling was performed in three deltaic, coastal, and island zones at Laft-Khamir estuary on Qeshm Island
Material and Methodology: three stations were selected in each region. Water parameters (temperature, salinity, pH, dissolved oxygen, turbidity, electrical conductivity, and total water-soluble solids), and biological parameters (microphytobenthos) were sampled in two cold and warm seasons (winter 2017 and summer 2018) during low tide time.
Findings: According to the results of this study, 10 species of these two orders were identified with 6 genera, of which 9 species belonged to the order Surirellales and only one belonged to the order Rhopalodiales. The genus Surirella with 4 species had the highest number of species and Surirella sp. with the highest density identified as the dominant species in the island zone and the cold season.
Discussion and Conclusion: The results obtained from statistical analysis that was performed to investigate the relationship between biological and environmental parameters showed that Microphytobenthos communities in the order Surirellales had a uniform distribution in deltaic, island, coastal zones in the studied seasons (P<0.05). However, there was a significant difference between the island zone and the coastal and deltaic zones in terms of communities of order Rhopalodiales (P<0.05), and the two orders Surirellales and Rhopalodiales showed more diversity in deltaic and island regions in warm seasons than in cold seasons. Additionally, based on the results of CAP analysis, changes in the parameters of temperature and salinity were recognized as the most important factors affecting the distribution of Cymatopleura, Cymatopleura elliptica, Campylodiscus sp., Surirella tenera, Surirella linearis, Surirella pinniger in the delta zones. It was also identified that changes in dissolved oxygen were the most important factors affecting the distribution of Entomoneis ornata in the island zone. Finally, Surirella sp, Stenopterobia sigmatella, and Rhopalodia gibba were identified as the dominant species in waters with lower salinity in the island zone.
1. Dalu, T., Richoux, N.B. and Froneman, P.W., (2016). Distribution of benthic diatom communities in a permanently open temperate estuary in relation to physico-chemical variables. South African Journal of Botany, 107, pp.31-38.
2. Chariton, A.A., Stephenson, S., Morgan, M.J., Steven, A.D., Colloff, M.J., Court, L.N. and Hardy, C.M., (2015). Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environmental pollution, 203, pp.165-174.
3. Oeding, S. and Taffs, K.H., (2015). Are diatoms a reliable and valuable bio-indicator to assess sub-tropical river ecosystem health. Hydrobiologia, 758, pp.151-169.
4. ALEXEI PETROV, E. and Nevrova, A.N.N.A., (2010). Structure and taxonomic diversity of benthic diatom assemblage in a polluted marine environment (Balaklava Bay, Black Sea). Polish Botanical Journal, 55(1), pp.183-197.
5. Round, F.E., (1990). The Diatoms: Biology and Morphology of the Genera (Vol. 747). Cambridge University Press.
6. Ruck, Elizabeth C., and Edward C. Theriot. "Origin and evolution of the canal raphe system in diatoms." Protist 162, no. 5 (2011):723-737doi: 10.1016/j.protis.02.003.
7. Fourtanier, E. and Kociolek, J.P., (2009). Catalogue of diatom names. San Francisco, CA: California Academy of Sciences.
8. Guiry, M.D. and Guiry, G.M., (2017). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. 2017. URL: http://www. algaebase. org.
9. Lowe, R.L., (2003). Keeled and canalled raphid diatoms. In Freshwater Algae of North America (pp. 669-684). Academic Press.
10. Hamsher, S.E., Graeff, C.L., Stepanek, J.G. and Kociolek, J.P., (2014). Frustular morphology and polyphyly in freshwater Denticula (Bacillariophyceae) species, and the description of Tetralunata gen. nov.(Epithemiaceae, Rhopalodiales). Plant ecology and evolution, 147(3), pp.346-365.
11. Nakayama, T., Ikegami, Y., Nakayama, T., Ishida, K.I., Inagaki, Y. and Inouye, I., (2011). Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. Journal of plant research, 124, pp.93-97. DOI 10.1007/s10265-010-0355-0.
12. Nakayama, T. and Inagaki, Y., (2017). Genomic divergence within non-photosynthetic cyanobacterial endosymbionts in rhopalodiacean diatoms. Scientific reports, 7(1), p.13075.
13. Desianti, N., Potapova, M., Enache, M., Belton, T.J., Velinsky, D.J., Thomas, R. and Mead, J., (2017). Sediment diatoms as environmental indicators in New Jersey coastal lagoons. Journal of Coastal Research, (78), pp.127-140.
14. Taylor, J. C., Harding, W. R., & Archibald, C. G. M. (2007). A methods manual for the collection, preparation and analysis of diatom samples. Version, 1, 60.
15. Kang, W., Anslan, S., Börner, N., Schwarz, A., Schmidt, R., Künzel, S., Rioual, P., Echeverría-Galindo, P., Vences, M., Wang, J. and Schwalb, A., (2021). Diatom metabarcoding and microscopic analyses from sediment samples at Lake Nam Co, Tibet: The effect of sample-size and bioinformatics on the identified communities. Ecological Indicators, 121, p.107070.
16. Pandey, L.K., Sharma, Y.C., Park, J., Choi, S., Lee, H., Lyu, J. and Han, T., (2018). Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters. Aquatic Toxicology, 194, pp.67-77.
17. Wehr, J.D., Sheath, R.G. and Kociolek, J.P. eds., (2015). Freshwater algae of North America: ecology and classification. Elsevier.
18. Dhargalkar, V.K., Ingole, B.S. (2004). Phytoplankton identification manual. National Institute of Oceanography.
19. Tan, T.H., Leaw, C.P., Leong, S.C.Y., Lim, L.P., Chew, S.M., Teng, S.T. and Lim, P.T., (2016). Marine micro-phytoplankton of Singapore, with a review of harmful microalgae in the region. Raffles Bulletin of Zoology.
20. Ruck, E.C., Nakov, T., Alverson, A.J. and Theriot, E.C., (2016). Phylogeny, ecology, morphological evolution, and reclassification of the diatom orders Surirellales and Rhopalodiales. Molecular phylogenetics and evolution, 103, pp.155-171.
21. Jahn, R., Kusber, W.H. and Cocquyt, C., (2017). Differentiating Iconella from Surirella (Bacillariophyceae): typifying four Ehrenberg names and a preliminary checklist of the African taxa. PhytoKeys, (82), p.73.
22. Mahwish Shoaib, M.S., Zaib-un-Nisa Burhan, Z.U.N.B., Seema Shafique, S.S., Hina Jabeen, H.J. and Siddique, P.J.A., (2017). Phytoplankton composition in a mangrove ecosystem at Sandspit, Karachi, Pakistan
23. Morais, K.S.D., Bartozek, E.R., Zorzal-Almeida, S., Bicudo, D.C. and Bicudo, C.E.D.M., (2018). Taxonomy and ecology of order Surirellales (Bacillariophyceae) in tropical reservoirs in Southeastern of Brazil. Acta Limnologica Brasiliensia, 30, p.e204. https://doi.org/10.1590/S2179-975X9817.
24. Cocquyt, C. and Jahn, R., (2005). Rare Surirella taxa (Bacillariophyta) from East Africa described by Otto Müller: typifications, recombinations, new names, annotations and distributions. Willdenowia, 35(2), pp.359-371. https://doi.org/10.3372/wi.35.35218.
25. Lai GG, Beauger A, Wetzel CE, Padedda BM, Voldoire O, Lugliè A, Allain E, Ector L (2019) Diversity, ecology and distribution of benthic diatoms in thermo-mineral springs in Auvergne (France) and Sardinia (Italy). Peer J 7: 7238. https://doi.org/10.7717/peerj.7238.
26. Johnson, V.R., Brownlee, C., Milazzo, M. and Hall-Spencer, J.M., (2015). Marine microphytobenthic assemblage shift along a natural shallow-water CO2 gradient subjected to multiple environmental stressors. Journal of Marine Science and Engineering, 3(4), pp.1425-1447.
27. Roohi-Shalmaee, N., Mousavi-Nadushan, R., Mostafavi, P.G., Shahbazzadeh, D. and Pooshang Bagheri, K., 2020. Ecological adaptation of the Persian Gulf polychaete in a polluted area: proteomics concerning dominant defensive biomarkers. International Journal of Environmental Science and Technology, 17(4), pp.1937-1946.
28. Du, G., Chung, I.K. and Xu, H., (2016). Insights into community-based bioassessment of environmental quality status using microphytobenthos in estuarine intertidal ecosystems. Acta Oceanologica Sinica, 35, pp.112-120.
29. Hendrarto, I.B. and Nitisuparjo, M., (2011). Biodiversity of benthic diatom and primary productivity of benthic micro-flora in mangrove forests on central Java. Journal of Coastal Development, 14(2), pp.131-140.
30. Ramrath, A., Nowaczyk, N.R. and Negendank, J.F., (1999). Sedimentological evidence for environmental changes since34,000 years BP from Lago di Mezzano, central Italy. Journal of Paleolimnology, 21, pp.423-435.
31. Van Campo, E. and Gasse, F., (1993). Pollen-and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13,000 yr BP. Quaternary Research, 39(3), pp.300-313.
32. Gregory, W., (1855). On a post-Tertiary lacustrine sand, containing Diatomaceous exuviae, from Glenshira, near Inverary. Journal of Cell Science, 1(9), pp.30-43.
33. Kociolek, J.P., Blanco, S., Coste, M., Ector, L., Liu, Y., Karthick, B. (2021). Diatom base Stenopterobia sigmatella (Gregory).
34. Oksiyuk, O.P., Davydov, O.A. and Karpezo, Y.I., (2011). Microphytobenthos as bioindicator of the state of aquatic ecosystems. Hydrobiological Journal, 47(1).
35. Krayesky, D.M., Meave del Castillo, E., Zamudio, E., Norris, J.N., Fredericq, S., Tunnell Jr, J., Felder, D. and Earle, S., (2009). Diatoms (Bacillariophyta) of the Gulf of Mexico. Felder, DL & DK Camp. Gulf of Mexico origin, waters, and biota, 1, pp.155-186. https://www.researchgate.net/publication/255181247.
36. Garrido, B. A., Romo, S., & Villena, M. J. (2013). Diatom species composition and indices for determining the ecological status of coastal Mediterranean Spanish lakes. In Anales del Jardín Botánico de Madrid (Vol. 70, No. 2, pp. 122-135). Consejo Superior de Investigaciones Científicas.
37. Kosari, S., Mousavi Nadushan, R., Faremi, R., Ejlali Khanghah, K. and Mashinchian, A., 2021. Macrobenthos as bioindicator of ecological status in the Yekshabe creek-estuary, Persian Gulf. Iranian Journal of Fisheries Sciences, 20(2). doi.org/10.22092/ijfs.2021.123874
38. Borja, A. and Dauer, D.M., (2008). Assessing the environmental quality status in estuarine and coastal systems: comparing methodologies and indices. Ecological indicators, 8(4), pp.331-337. doi.org/10.1016/j.ecolind.2007.05.004
39. Ghiyas Abadi, M., Mousavi Nadushan, R., Fatemi, M. R., Jozi, S. A., 2014. Assessment of Gahar Lake Trophic Status using TLI Index. – Journal of Marine Science and Technology Research 8(4): pp. 75-88.
40. Borja, A., Elliott, M., Henriksen, P. and Marbà, N., (2013). Transitional and coastal waters ecological status assessment: advances and challenges resulting from implementing the European Water Framework Directive. Hydrobiologia, 704, pp.213-229. doi.org/10.1007/s10750-012-1276-9.
41. Vahidi, F., Fatemi, S.M.R., Danehkar, A., Mashinchian, A. and Musavi Nadushan, R., (2020). Benthic macrofaunal dispersion within different mangrove habitats in Hara Biosphere Reserve, Persian Gulf. International Journal of Environmental Science and Technology, 17, pp.1295-1306.
42. Gibson, R.N., (1982). Recent studies on the biology of intertidal fishes. Oceanography and marine biology: an annual review, 20, p.902.
43. Costa-Böddeker, S., Thuyên, L.X., Schwarz, A., Huy, H.Đ. and Schwalb, A., (2017). Diatom assemblages in surface sediments along nutrient and salinity gradients of Thi Vai estuary and Can Gio mangrove forest, Southern Vietnam. Estuaries and coasts, 40, pp. 479-492.