Investigation of Microwave Absorption Properties in ISP/ER Composite with Different Amounts of ISP
Subject Areas : Journal of Environmental Friendly Materials
E Khosravipanah
1
,
A Salemi
2
,
H Sabet
3
1 - Department of Materials Engineering, Ka.C., Islamic Azad University, Karaj, Iran
2 - Department of Materials Engineering, Ka.C., Islamic Azad University, Karaj, Iran
3 - Department of Materials Engineering, Ka.C., Islamic Azad University, Karaj, Iran
Keywords: Composite, Microwave Absorber Materials, Sponge Iron, Reflection Loss,
Abstract :
Electromagnetic wave (EMW) absorbing materials working at GHz band have attracted increasing attention because of the increasing electromagnetic interference and radiation problems. In this study, iron spongy powder (ISP) used for microwave absorption. For the fabrication of composite samples, ISP and epoxy resin were used. In the composite compound, values of weight percentages 5, 10, 15, and 20 % were selected. Scanning electron microscope (SEM) was used to analyze the microstructure ISP. The microwave reflection loss (R.L.) have been investigated using a Vector Network Analyzer (VNA) at the X-band (8–12 GHz). The thickness of the ISP/epoxy composites was 2 mm. Compared with the microwave absorption performance, the minimum R.L. value is -7.4 dB with the 20 wt % at 10.7 GHz. It was concluded the increase in the weight percentage of sponge iron powder had an impact on improving microwave absorption performance.
[1] Huo KL, Yang SH, Zong JY, Chu JJ, Wang YD, Cao MS. Carbon-based EM functional materials and multi-band microwave devices: Current Progr. Persp. C. 2023;1;213:118193.
[2] Zhao H, Wang F, Cui L, Xu X, Han X, Du Y. Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Rev. Nano-Micro Lett. 2021; 1;13(1):208.
[3] Zhang Y, Tian Y, Xu N, Cui P, Guo L, Ma J, Kang Y, Qin L, Wu F, Zhang L, Huang W. In situ mechanical foaming of hierarchical porous MoC for assembling ultra-light, self-cleaning, heat‐insulation, flame‐retardant, and infrared‐stealth device. Adv. Funct. Mater. 2025;35(6):2414910.
[4] Zhang Y, Kong J, Gu J. New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 2022;67(14):1413-5.
[5] Lv H, Yao Y, Li S, Wu G, Zhao B, Zhou X, Dupont RL, Kara UI, Zhou Y, Xi S, Liu B. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023; 8;14(1):1982.
[6] Jia Z, Zhang X, Gu Z, Wu G. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorbers. Adv. Compos. Hybrid Mater. 2023;6(1):28.
[7] Yin P, Wu G, Tang Y, Liu S, Zhang Y, Bu G, Dai J, Zhao Y, Liu Y. Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe, Ni) for broadband microwave absorption. Chem. Eng. J. 2022; 15;446:136975.
[8] Sun L, Zhu Q, Jia Z, Guo Z, Zhao W, Wu G. CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. C. 2023;208:1-9.
[9] Wang JQ, Zheng Q, Cao WQ, Zhai HZ, Cao MS. Heterodimensional hybrids assembled with multiple-dimensional copper selenide hollow microspheres and graphene oxide nanosheets for electromagnetic energy conversion and electrochemical energy storage. Adv. Compos. Hybrid Mater. 2024;7(1):14.
[10] X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu, J. Gu, Adv. Funct. Mater. 2024; 34:2313544.
[11] Jiang Z, Si H, Li Y, Li D, Chen H, Gong C, Zhang J. Reduced graphene oxide@ carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022;15(9):8546-54.
[12] Zhao H, Xu X, Wang Y, Fan D, Liu D, Lin K, Xu P, Han X, Du Y. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small. 2020;16(43):2003407.
[13] Jiang Z, Gao Y, Pan Z, Zhang M, Guo J, Zhang J, Gong C. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Tech. 2024;174:195-203.
[14] Zhao J, Wang B, Liu T, Luo L, Wang Y, Zheng X, Wang L, Su Y, Guo J, Fu H, Chen D. Study of in situ formed quasicrystals in Al-Mn based alloys fabricated by SLM. J. Allo. Comp. 2022; 15;909:164847.
[15] Yang J, Chen Y, Yan X, Liao X, Wang H, Liu C, Wu H, Zhou Y, Gao H, Xia Y, Zhang H. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection’s, Compos. Sci. Tech.2023; 28;240:110093.
[16] Lyu L, Wang F, Zhang X, Qiao J, Liu C, Liu J. CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. C. 2021; 1;172:488-96.
[17] Li WH, Liang HJ, Hou XK, Gu ZY, Zhao XX, Guo JZ, Yang X, Wu XL. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J. Ener. Chem.2020; 1;50:416-23.
[18] Ren Y, Xu L, Sun Y, Li X, Shen Z, Li H, Liu J. Study on oxidation behavior during process of recycling carbon fibers from CFRP by pyrolysis. J. Envi. Man. 2023; 1;347:119103.
[19] Ren Y, Yan T, Huang Z, Zhou Q, Hua K, Li X, Du Y, Jia Q, Zhang L, Zhang H, Wang H. Cryogenic wear behaviors of a metastable Ti-based bulk metallic glass composite. J. Mater. Sci. Tech. 2023; 20;134:33-41.
[20] Cai H, Zou J, Lin J, Li J, Huang Y, Zhang S, Yuan B, Ma J. Sodium hydroxide-enhanced acetaminophen elimination in heat/peroxymono sulfate system: Production of singlet oxygen and hydroxyl radical. Chem.Eng. J. 2022; 1;429:132438.
[21] Zhang F, Xu D, Zhang D, Ma L, Wang J, Huang Y, Chen M, Qian H, Li X. A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications. Chem. Eng. J. 2021; 1;423:130238.
[22] Koo WT, Jang JS, Kim ID. Metal-organic frameworks for chemiresistive sensors. Chem. 2019; 8;5(8):1938-63.
[23] Shan Z, Cheng S, Wu F, Pan X, Li W, Dong W, Xie A, Zhang G. Electrically conductive Two-dimensional Metal-Organic frameworks for superior electromagnetic wave absorption. Chem. Eng. J. 2022; 15;446:137409.
[24]Miao P, Liu J, He M, Leng X, Li Y. Bio-based non-isocyanate polyurethane with closed-loop recyclability and its potential application. Chem. Eng. J. 2023; 1;475:146398.
[25] Jiao Y, Li J, Xie A, Wu F, Zhang K, Dong W, Zhu X. Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos Sci. Tech. 2019; 12;174:232-40.
[26]Wang Y, Zhang W, Wu X, Luo C, Wang Q, Li J, Hu L. Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth. Met. 2017; 1;228:18-24.
[27] Ahmadijokani F, Molavi H, Rezakazemi M, Tajahmadi S, Bahi A, Ko F, Aminabhavi TM, Li JR, Arjmand M. UiO-66 metal–organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 2022; 1;125:100904.
[28] Wang P, Cheng L, Zhang L. One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. C. 2017; 1;125:207-20.
[29] Wang P, Cheng L, Zhang Y, Zhang L. Flexible SiC/Si3N4 composite nanofibers with in situ embedded graphite for highly efficient electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 2017; 30;9(34):28844-58.
[30] Kumar A, Agarwala V, Singh D. Effect of particle size of BaFe 12 O 19 on the microwave absorption characteristics in X-band. Prog. Electromagn. Res. M. 2013;29:223-36.
[31] Zhang B, Li J, Sun J, Zhang S, Zhai H, Du Z. Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range. J. Eur. Ceram. Soc. 2002; 1;22(1):93-9.
[32]Kumar A, Agarwala V, Singh D. Microwave absorbing behavior of metal dispersed TiO2 nanocomposites. Adv. Powd. Tech. 2014; 1;25(2):483-9.
[33] Feng Y, Qiu T. Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt% Ni alloy by shape modification. J. Magn. Mater. 2012; 1;324(16):2528-33.
[34] Prema KH, Kurian P, Anantharaman MR, Suma MN, Joseph M. Permittivity characteristics in the X-and S-band frequencies of microwave absorbers based on rubber ferrite composites. J. Elastomers Plast. 2008;40(4):331-46.
[35] Jou CJ, Hsieh SC, Lee CL, Lin C, Huang HW. Combining zero-valent iron nanoparticles with microwave energy to treat chlorobenzene. J. Taiwan Inst. Chem. Eng. 2010; 1;41(2):216-20.
[36] Zhang B, Feng Y, Xiong J, Yang Y, Lu H. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Trans. Magn. 2006; 26;42(7):1778-81.
[37] W. Welbone, B. Fia, US Patent, 4, 1983, 414. [38] P. Tailhades, S.O.D. Gameville, V. Carles, Pinsaguel, A. Rousset, R.S. Agne, US Patent, 6, 2002, 464.
[39] A.G. Ronald, Sandia Report, 2001.
[40] Handoko E, Marpaung MA, Jalil Z, Rahwanto A, Aulia TB, Iriani Y, Mutiara AM, Utami GA, Fernando J, Tarihoran LA, Munthe SM. Microwave absorption studies in X-band of magnetized barium hexaferrite. Int. J. Phys. Conf. Ser. 2024;1(2866):012025.
[41] Bora PJ, Khanum KK, Ramesh RK, Vinoy KJ, Ramamurthy PC. Porous fibres of a polymer blend for broadband microwave absorption. Mater. Adv. 2021;2(11):3613-19.
[42] Wang G, Gao Z, Wan G, Lin S, Yang P, Qin Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014;7:704-16.
[43] Wei S, Wang X, Zhang B, Yu M, Zheng Y, Wang Y, Liu J. Preparation of hierarchical core-shell C@ NiCo2O4@ Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J. 2017; 15;314:477-87.
[44] Yang E, Qi X, Xie R, Bai Z, Jiang Y, Qin S, Zhong W, Du Y. Core@ shell@ shell structured carbon-based magnetic ternary nanohybrids: synthesis and their enhanced microwave absorption properties. Appl. Surf. Sci. 2018; 31;441:780-90.
[45] Xue W, Yang G, Bi S, Zhang J, Hou ZL. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF- 8@ ZIF-67 for electromagnetic wave absorption. Ca. 2021; 1;173:521-27.