
 
 

1 

 Journal of Environmental Friendly Materials, Vol. 9, No. 1, 2025, 01-06. 

 
 

 Investigation of Microwave Absorption Properties in ISP/ER Composite 

with Different Amounts of ISP 
 

E. Khosravipanah1, 2, A. Salemi Golezani1, 2,*, H. Sabet1, 2 
 

1Department of Materials Engineering, Ka.C., Islamic Azad University, Karaj, Iran. 
2Institute of Manufacturing Engineering and Industrial Technologies, Ka.C., Islamic Azad University, Karaj, Iran. 

Received: 09 November 2024 - Accepted: 14 April 2025 

 

 

Abstract 
 

Electromagnetic wave (EMW) absorbing materials working at GHz band have attracted increasing attention because of the 

increasing electromagnetic interference and radiation problems. In this study, iron spongy powder (ISP) used for microwave 

absorption. For the fabrication of composite samples, ISP and epoxy resin were used. In the composite compound, values of 

weight percentages 5, 10, 15, and 20 % were selected. Scanning electron microscope (SEM) was used to analyze the 

microstructure ISP. The microwave reflection loss (R.L.) have been investigated using a Vector Network Analyzer (VNA) at 

the X-band (8–12 GHz). The thickness of the ISP/epoxy composites was 2 mm. Compared with the microwave absorption 

performance, the minimum R.L. value is -7.4 dB with the 20 wt. % at 10.7 GHz. It was concluded the increase in the weight 

percentage of sponge iron powder had an impact on improving microwave absorption performance. 
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1. Introduction 
 

Nowadays, with the fast progress of electronic 

techniques, excessive electromagnetic radiation in 

the microwave band leads to numerous serious 

hazards, e.g. electromagnetic interference (EMI)     

[1-3], electromagnetic leakage of classified 

information, and possible health problems for human 

beings, etc [4-6]. Electromagnetic contamination 

gradually becomes one of the non-negligible hazard 

factors to be addressed urgently [7-9]. Among the 

many methods of electromagnetic protection, the 

design and preparation of electromagnetic-wave 

absorption materials (EWAMs) has been proven to be 

a very effective technique for eliminating such 

troubles induced by excessive microwave radiation 

[10-12]. Electromagnetic wave (EMW) absorption 

materials such as MXene [13], rare earth [14, 15], and 

carbon materials [16–18] have attracted significant 

attention in recent years for their ability to efficiently 

convert incident microwaves into heat and other 

forms of energy [19-21]. Although conventional 

EMW absorption materials, including ferrites, 

ceramics, metal oxides [22], etc. exhibit excellent 

microwave absorption efficiency, they often suffer 

from high density and lack of tunability. Ideal EMW 

absorption materials should possess characteristics 

such as strong absorption capability, broad 

absorption range, thin thickness and low filling ratio, 

etc [23-25]. Moreover, given the widespread 

applications of EMW materials, the fabrication of 

microwave absorbers should also meet the 

requirements in the  
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practical [26,27] or industrial realm, including 

accessible raw materials and facile preparation 

methods conducive to mass production [16]. The 

growing need for microwave absorbing materials 

requires effective and cost-effective solutions for 

both defense and civilian fields. Microwave 

absorbing materials impart stealth features which 

increase the possibility of survivability of the military 

equipment in the advent of any war. Apart from 

instilling stealth features to the military equipment, 

microwave absorbing materials also plays a 

significant role in suppressing the problem of 

electromagnetic interference (EMI) problem in this 

technology-driven era. EMI not only disrupts the 

proper functioning of electronic gadgets by 

interfering with the electronic circuitry but also acts 

as a source for hazardous health implications to 

human and other biological systems from chronic 

exposures to microwave radiations [28,29]. In 

response to the need, much attention has been 

focused on tailoring the structural parameters of the 

microwave absorbers to achieve enhanced 

microwave absorbing properties [30]. The 

importance of microwave absorbing materials has 

significantly drawn the keen attention of the 

searchers to develop new materials and techniques 

for achieving enhanced microwave absorption [31–

33]. 

Iron powder and ferrite are magnetic materials are 

usually used as microwave absorbencies [34,35]. 

Previous research [36] reported that the thicknesses 

of microwave absorbing composites containing CIPs 

0.3–0.6 volume content (77–92 wt %) were all 1 mm; 

such composites reached 10 dB R.L. at S, C, X, and 

Ku bands. Although their thickness was only 1 mm, 

containing too much CIPs would make the 

composites inflexible, heavy, and easily broken. 
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Two US patents [37,38] and the Sandia report [39] 

denoted that iron powders with spongy and porous 

structures were usually used in heating compositions 

for thermo-piles and electrical energy accumulators, 

such as electrical Ni–Cd cells or Ni–metal hydride 

cells.  

Since the spongy structure and porous characteristic, 

spongy iron powders (SIPs) possess high surface 

areas, which lead to plenty of interfacial polarization 

to weaken the energy of EM waves. In this study, the 

SIP was used to be bound with the epoxy for the 

preparation of microwave absorbing composites.  
 

2. Materials and Methods 

 

Initially, the required amount of iron powder was 

accurately weighed. Based on the target weight 

percentage, the powder was mixed with epoxy resin 

using a mechanical stirrer for 2 hours to ensure 

uniform dispersion.  

The resulting mixture was then poured into a mold. 

After degassing to eliminate surface bubbles, the 

samples were allowed to cure at room temperature for 

24 hours. Iron powder was mixed with epoxy to 

fabricate microwave-absorbing composites. A total 

of four samples with weight percentages of 5%, 10%, 

15%, and 20% and dimensions of 0.9 × 2.4 in² were 

prepared. The microwave reflection loss (R.L.) in the 

X-band was measured. The device used in this study 

was an Agilent E8362B Vector Network Analyzer 

(VNA) operating in the X-band frequency range. 

The reflection loss (RL) and transmission loss (TL) 

were measured by using a vector network analyzer 

(VNA) to study the microwave absorption properties 

in the frequency range of 8–12 GHz (X–band), as can 

be seen in Fig. 1. [40]. 

 

 
 

Fig. 1. The experimental vector network in the 

frequency of 8–12 GHz. 

 

3. Results and Discussion 
3.1. Morphological and Physical Properties of the ISP 

 

Fig. 2. shows the SEM images of ISP, which was 

prepared in this study. They show that the structure 

of ISP is spongy, noodle-like, and porous.  

Therefore, it could be suspected that the ISP may 

have a large specific area.  

 

 

 
Fig. 2. The SEM of the ISP at two magnifications. 

 
3.2. Microwave Absorption Performance 

 

The spongy structure of ISP possesses a high content 

of pores. Since ISP possess a special structure and a 

large specific surface due to their porous character, 

the ISP would enhance microwave absorbency by the 

larger microwave interaction area. There are two 

parameters of flat microwave absorbing composites 

for controlling microwave absorbing frequency. One 

is the weight percentage of absorbencies, and the 

other is the thickness of microwave absorbing 

materials [41]. Particularly, in comparison with 

previous research on microwave absorbing, this study 

tuned the compositions and the thickness of samples 

to control the absorbing peaks at X-band. 

According to the transmission line theory, the RL 

values can be calculated by the following equations 

[42,43] : 

 

RL (dB)= 20 log |Zin−Z0

Zin+Z0
|    Eq. (1).  

 

Zin = Z0 = √
μr 

Ɛr
 tanh [𝑗 (

2 π𝑓𝑑 

𝑐
√μr Ɛr)]  Eq. (2). 

 

where Z0 is the impedance of free space, Zin is the 

input impedance of the absorber, f is the working 

frequency, d is the thickness of the absorber, c is the 

a 

b 
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 velocity of light, μr and εr complex permeability and 

complex permittivity of the absorber material 

respectively . 

Fig. 3. shows the reflection loss curves of four groups 

of ISP composites with different weight percentage 

values in the frequency range of 8-12 GHz. From  

Fig. 3. it can be seen that the addition of ISP makes 

the composites have EM microwave absorption 

properties.  

 
Fig. 3. Reflection loss curves of ISP/epoxy composites: 

(a) 5 wt%, (b) 10 wt%, (c) 15 wt%, (d) 20 wt%. 

 

Among them, the composites with ISP content of 20 

wt% have the best microwave-absorbing effect, and 

the minimum reflection loss of -7.4 dB at 10.7 GHz 

is achieved at a thickness of 2 mm. In addition, the 

reflection loss curves of the composites are mainly 

concentrated in the low-frequency range of 6~9 GHz, 

which indicates that the loss absorption of EM 

microwaves by the composites mainly occurs at the 

low frequency, and the experimentally prepared 

ISP/epoxy composites have a better advantage of 

low-frequency EM microwave absorption 

performance. It is important to note that the 

composite can be used directly to make the required 

structural absorbers rather than just as a coating 

material. Normally, EM microwaves are partially 

reflected when they are incident on the surface of a 

material.  

 

α=√2πfc√(με − με) + √(με − με )2 + (με + με )2    

Eq. (3). 

 
Fig. 4. The attenuation constant (α) of ISP/epoxy 

composites: (a) 5 wt%, (b) 10 wt%, (c) 15 wt%, (d) 20 

wt%. 

a 

b 

c 
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In order to make the EM microwaves better incident 

on the inside of the material instead of reflecting on 

the surface, good impedance matching is required; 

however, good impedance matching will, to a certain 

extent, make the material's ability to attenuate the EM 

microwaves lower. Therefore, the attenuation and 

impedance matching of EM microwaves need to be 

coordinated during practical application. The 

attenuation constant (α), representing the internal 

attenuation ability of the materials, can be calculated 

by the following equation [44] 

Fig. 4. demonstrates the composite attenuation 

coefficient, showing normal variation with 

frequency. The trends of the peak values of the 

attenuation coefficients of the four groups of 

composites with different ISP contents are basically 

the same, among which the peak values of the 

attenuation constants of the composite with 20 wt% 

ISP content are significantly higher than those of the 

other groups, indicating that their microwave-

absorbing performances are superior to that of the 

other groups, which corresponds to that of the 

composites with the best microwave-absorbing 

performances in the composite with the 20 wt% ISP 

content in Fig. 3. Good impedance matching is very 

important for microwave-absorbing materials; the 

more consistent the characteristic impedance of the 

material composite, the closer the synergistic effect is 

to the free-space characteristic impedance, the more 

EM microwaves will penetrate into the microwave-

absorbing material, and the better the microwave-

absorbing performance will be [45]. 

 

4. Conclusion 

 

1. The studied material shows microwave absorption 

properties in the frequency range of 8–12 GHz.  

2. The resulting R.L. and absorption values were −7.4 

dB and 80% for ISP/epoxy composite with 20 wt%. 

respectively.  

3. The production of composites with sponge iron 

powder is very cost-effective due to its low price.  

4. Due to ISP's spongy structure and porous 

characteristics, the powders can be used as a 

microwave absorbent. Thus, the composites 

consisting of ISP could be applied as microwave-

absorbing materials.  
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