شناسایی عوامل موثر بر کاربرد رایانش ابری در دانشگاههای دولتی به روش تحلیل عاملی
محورهای موضوعی : آموزش و پرورش
1 - استادیار گروه مدیریت بازرگانی دانشگاه آزاد اسلامی واحد اسلامشهر دانشکده مدیریت و حسابداری.
کلید واژه: رایانش ابری, روش تحلیل عاملی, دانشگاههای دولتی شهر تهران,
چکیده مقاله :
هدف این مطالعه شناسایی عوامل موثر بر کاربرد رایانش ابری در دانشگاههای دولتی شهر تهران بود. این مطالعه با توجه به روش و چگونگی بدست آوردن دادهها، از نوع توصیفی- اکتشافی با روش پیمایشی بشمار میرود. جامعه آماری مورد مطالعه را تمامی مدیران و کارشناسان آشنا با فناوری دادهها و ارتباطات دانشگاههای دولتی شهر تهران تشکیل دادهاند که شامل 217 نفر است. روش نمونهگیری بکار رفته در مطالعه، نمونهگیری تمام شمار است. برای گردآوری دادههای مربوط به عوامل موثر بر کاربرد رایانش ابری، از پرسشنامه بهره گرفته شد. روایی پرسشنامه به وسیله اساتید و کارشناسان حوزه فناوری دادهها و ارتباطات مورد بررسی قرار گرفت و تایید شد. پایایی پرسشنامه با استفاده از ضریب آلفای کرونباخ برابر با 917/. در سطح خوبی محاسبه گردید. بر اساس یافتههای پژوهش، 30 متغیر اثرگذار در بکارگیری رایانش ابری در 5 دسته کلی قرار گرفتند. در گام بعد و در تحلیل عوامل پنج گانه اثرگذار بر کاربرد رایانش ابری، مشخص گردید. عامل نخست با برخورداری 4 متغیر (عوامل ارزیابی ذهنی فناوری، تفکر به برآورده شدن انتظار، اعتبار از ارایه دهنده خدمات ابر و اعتبار از نوآوری) از 30 متغیر،در کل 546/27 درصد از واریانس کل را تبیین میکند که بیانگر اهمیت بیشتر این عوامل از دیگر عوامل پنج گانه است.
The aim of this study was to identify factors influencing the use of cloud computing in the public universities in Tehran. Based on the procedure and the way to collect data, the research method in this study is a descriptive exploratory survey. The study population included all managers and experts familiar with ICT at universities in Tehran including 217 people. The sampling method used in the study was mostly all poses. To collect data related to the factors affecting the application of cloud computing, a questionnaire was used. The validity was evaluated and verified by professors and experts in the field of information and communication technology. Reliability was calculated at a good level using Cronbach's alpha coefficient equal to 917 /. The results of the study showed that 30 variables affecting the deployment of cloud computing in general were in five categories. In the next step of the analysis of the factors, five categories influencing the use of cloud computing were identified respectively. The first factor having four variables (factors of subjective assessment technology, thought to expectations, the credibility of the cloud service provider, the credibility of innovation) from 30 variables, in general, showed 546/27 percent of the total variance which indicates the importance of these factors than other five factors.
- Abdolvand, N. & Tarany, D. (2013). Adoption of cloud enterprise resource planning systems in small and medium companies. Journal of Management Sciences, Vol IX, Issue 34, Summer 1393, S104-81(In Persian)
- Aceto, G., Botta, A., de Donato, W. & Pescape, A. (2013). Cloud monitoring a survey. Computer Networks, 53, 2093-2115.
- Altaf, F. & Schuff, D. (2010). Taking a flexible approach to ASPs. Commun. ACM, 53(2), 139.
- Antonopoulos, N. & Gillam, L. (2010). Cloud Computing Principles. Systems and Applications, 20-26
- Avram, G. (2014). Advantages and challenges of adopting cloud computing from an enterprise perspective. Procedia Technology, 12, 529-534.
- Bhardwaj, S. Jain, L. & Jain, S. (2010). Cloud Computing: A Study of Infrastructure-as-a-Service. International Journal of Engineering and Information Technology, 60-63.
- Borgman, H. P. Bahli, B. Heier, H. & Schewski, F. (2013). Cloudrise: Exploring Cloud Computing Adoption and Governance with the TOE Framework. In: 46th Hawaii International Conference on System Sciences, 4425–4435.
- Craig, R. Frazier, J. Jachnis, N. Murphy, S. Purcell, C. & Spencer. P. (2009). Cloud Computing in the Public Sector: Public Manager’s Guide to Evaluating and Adopting Cloud Computing. Cisco Internet Business Solutions Group
- Garg, S.K., Versteeg, S. & Buyya, R. (2011). SMICloud: A Framework for Comparing and Ranking Cloud Services. Fourth IEEE International Conference on Utility and Cloud Computing. December 5-7, Melbourne, Australia.
- Garrisona, G. Wakefield, R. L. & Kim, S. (2015). The effects of IT capabilities and delivery model on cloud computing success and firm performance for cloud supported processes and operations. International Journal of Information Management, 53 (4), 377–393.
- Golsanam, M.R. & Sayedabasi, A. (2014). Adoption of cloud computing in education, computer engineering and IT Management Conference, Tehran, Science and Technology, Farzin sunrise. (In Persian)
- Gregg, D. G. & Walczak, S. (2008). Dressing your online auction business for success: an experiment comparing two ebay businesses. MIS Quarterly, 32(3), 653-670.
- Hailu, A. (2012). Factors Influencing Cloud-Computing Technology Adoption in Developing Countries. Published by ProQuest LLC
- Kishteri, N. (2016). Institutional and economic factors affecting the development of the Chinese cloud computing industry and market. Telecommunications Policy, 40 (2-3), 116-129.
- Kuo, A. M. H. (2011). Opportunities and challenges of cloud computing toimprove health care services. Journal of Medical Internet Research, 13(3), e67.
- Budņiks, L. & Didenko , K. (2014). Factors Determining Application of Cloud Computing Services in Latvian SMEs. Procedia - Social and Behavioral Sciences , 156, 74-77.
- Lin, A. & Chen, N.-C. (2012). Cloud computing as an innovation: Perception, attitude, and adoption. International Journal of Information Management, 32, 533–540.
- Lian, J., Yen, D. & Wang, Y. (2014). An exploratory study to understand the critical factorsaffecting the decision to adopt cloud computing in Taiwan hospital. International Journal of Information Management
- Low, C. Chen, Y. & Wu, M. (2011). Understanding the determinants of cloud computing adoption. Industrial Management & Data Systems, 111(7), 1006–1023.
- Marston, S., Li, Z., Bandyopadhyay, S., Zhang, & J.andGhalsasi, A. (2011). Cloud computing: The business perspective. Decision Support Systems, 51, 176-189.
- Mell, P. & Grance, T. (2009). The NIST Definition of Cloud Computing. National Institute of Standards and Technology, Gaithersburg.
- Nuseibeh, H. (2011). Adoption of Cloud Computing in Organizations. Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan.
- Oliveiraa, T. Thomas, M. & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497–510.
- Opitz, N. Langkau, T. F. Schmidt, N. H. & Kolbe, L. M. (2012). Technology Acceptance of Cloud Computing: Empirical Evidence from German IT Departments. In: Proceedings of the HICSS, 1593–1602.
- Park, S. C. & Ryoo, S. Y. (2013). An empirical investigation of end-users’ switching toward cloud computing: A two factor theory perspective. Computers in Human Behavior, 29(1), 160–70.
- Qobadpur, W. Naghshineh, N. & Sabetpour, A. (2012). From cloud computing to cloud library, the library is designed to offer cloud computing paradigm. Journal of Information Processing and Management, Vol. 28, No. 4, 877-860. (In Persian)
- Shawish, A. & Salama, M. (2014). Cloud Computing: Paradigms and Technologies. Nter-cooperative Collective Intelligence: Techniques and Applications. 495, 39-67.
- Scholtz, B. Govender, J. & Gomez, J. M. (2016). Technical and Environmental Factors Affecting Cloud Computing Adoption in the South African Public Sector. International Conference on Information Resources.
- Shafaie Tonekaboni, M.S. Shaikh, R. & Jalali, M. M. (2014). Survey about the priorities of influencing factors of IT outsourcing in the context of cloud computing, the universities benefit from the method in Semnan province with fuzzy Dymtl. Journal of Information Technology Management, Volume 7, Number 2, 344-325. (In Persian)
- Sonnenwald, D. H. Maglaughlin, K. L. & Whitton, M. C. (2001). Using innovation diffusion theory to guide collaboration technology evaluation: work in progress. Proceedings. Tenth IEEE International Workshops.
- Stieningera, M. Nedbala, D. Wetzlingera, W. Wagnera, G. & Erskineb, M. A. (2014). Impacts on the organizational adoption of cloud computing: A reconceptualization of influencing factors. Procedia Technology, 16, 85 – 93.
- Strahringer, S. (2009). Nutzung interorganisationaler Informationssysteme in der Lieferkette – Einflussfaktoren und Kausalmodell. Wissenschaftliche Zeitschrift der Technischen Universität Dresden, 58(1 - 2), 97–102.
- Sultan, N. (2011). Reaching for the „cloud”: How SMEs can manage. International Journal of Information Management, 272-278.
- Venkatesh, V. Morris, M.G. Davis, G. B. & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly Executive, (27), 425–78.
- Wei, L, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, & A. Vasilakos. (2013). Security and privacy for storage and computation in cloud computing. Information Sciences 258: 371-386
- Wu, W. (2011). Developing an explorative model for SaaS adoption. Expert Systems with Applications, 38(12), 15057–64.
- Yaghoobi, N. Jafari, H. & Shokuhi, J. (2014). Identify and rank the risk factors of cloud computing in government agencies. Journal of Information Processing and Management, Volume 30, Number 3, 784-758. (In Persian)
- Yaghoobi, N. Jafari, H. & Shokuhi, J. (2013). Identify and rank key factors influencing the adoption of cloud computing in e-health. Journal of Information Processing and Management, Vol 30, No. 2, 570-547. (In Persian)
- Yaghoobi, N. Hemat, Z. & Rashki, M. (2014). The proposed model eco-system factors influencing the adoption of cloud computing in Iran) industry, academia and government services. Journal of Information Processing and Management, in press. (In Persian).
_||_