Evaluation of the Antioxidant Potency of Allium sativum L. on Acrylamide – Induced Neurotoxicity in Male Wistar Rats
Nadia Touzandehjani
1
(
Department of Pharmacy, Da.C., Islamic Azad University, Damghan, Iran
)
Azadeh Serri
2
(
Department of Pharmacy, Da.C., Islamic Azad University, Damghan, Iran
)
Jamshid Tabeshpour
3
(
Department of Pharmacy, Da.C., Islamic Azad University, Damghan, Iran
)
Keywords: Acrylamide, Allium sativum L., Oxidative stress, Neurotoxicity, Gait score, Wistar rat cortex,
Abstract :
Acrylamide (ACR), a common toxic byproduct formed in thermally processed foods, is known to cause neurotoxicity in humans, resulting in damage to peripheral nerves. This investigation assessed the neuroprotective efficacy of graded doses of Allium sativum L. (garlic) against ACR-induced neurotoxicity in the cerebral cortex of male Wistar rats, with a specific focus on the attenuation of glutathione (GSH) depletion and the reduction of elevated malondialdehyde (MDA) levels. A total of forty-two male Wistar rats were randomly allocated into seven experimental groups (n=6 per group). Group 1 received normal saline (control). Group 2 was administered 50 mg kg-1 ACR. Groups 3, 4, and 5 were administered ACR at a dose of 50 mg kg-1, followed 30 minutes later by oral gavage of garlic at 100, 200, and 400 mg kg-1, respectively. Group 6 received a daily dose of 200 mg kg-1 garlic only. Group 7 was co-administered 50 mg kg-1 ACR daily and 200 mg kg-1 vitamin E every other day, with the vitamin E delivered via oral gavage 30 minutes post-ACR administration. At the conclusion of the treatment protocol, we evaluated motor coordination through a standardized gait score assessment. ACR exposure significantly impaired gait, increased cortical MDA levels, and reduced GSH content (p<0.001 for both). Administration of garlic at doses of 100, 200, and 400 mg kg-1 resulted in a significant attenuation of cortical MDA levels (p < 0.05) and a concomitant elevation of reduced GSH content (p < 0.05), indicating a mitigation of ACR-induced oxidative stress. Gait abnormalities were also ameliorated in treated groups. The administration of garlic proved effective in alleviating gait disorders and neurotoxicity triggered by ACR in Wistar rats. The reduction of oxidative stress, evidenced by decreased MDA and increased GSH levels, likely contributes to the neuroprotective effects of garlic against ACR toxicity.
1. Friedman M., 2003. Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem. 51(16), 4504-26.
2. Zamani E., Shokrzadeh M., Fallah M., Shaki F., 2017. A review of acrylamide toxicity and its mechanism. Pharmaceutical and Biomedical Research. 3(1), 1-7.
3. Adewale O., Brimson J., Odunola O., Gbadegesin M., Owumi S., Isidoro C., 2015. The potential for plant derivatives against acrylamide neurotoxicity. Phytother Res. 29(7), 978-85.
4. Mottram D.S., Wedzicha B.L., Dodson A.T., 2002. Acrylamide is formed in the Maillard reaction. Nature. 419(6906), 448-9.
5. Pedreschi F., Mariotti M.S., Granby K., 2014. Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric. 94(1), 9-20.
6. Mollazadeh H., Hosseinzadeh H., 2014. The protective effect of Nigella sativa against liver injury: a review. Iran J Basic Med Sci. 17(12), 958.
7. Rifai L., Saleh F.A., 2020. A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. Int J Toxicol. 39(2), 93-102.
8. Zhu Y.J., Zeng T., Zhu Y.B., Yu S.F., Wang Q.S., Zhang L.P., 2008. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res. 33(2), 310-7.
9. Hong Y., Nan B., Wu X., Yan H., Yuan Y., 2019. Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sci. 231, 116550
10. Ghareeb D.A., Khalil A.A., Elbassoumy A.M., Hussien H.M., Abo-Sraiaa M.M., 2010. Ameliorated effects of garlic (Allium sativum) on biomarkers of subchronic acrylamide hepatotoxicity and brain toxicity in rats. Toxicol Environ Chem. 92(7), 1357-72.
11. Mehri S., Shahi M., Razavi B.M., Hassani F.V., Hosseinzadeh H., 2014. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci. 17(12), 1007.
12. Mehri S., Abnous K., Khooei A., Mousavi S.H., Shariaty V.M., Hosseinzadeh H., 2015. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iran J Basic Med Sci. 18(9), 902.
13. Busanello A., Barbosa N.B.V., Peroza L.R., Farias L.E., Burger M.E., Barreto K.P., 2011. Resveratrol protects against a model of vacuous chewing movements induced by reserpine in mice. Behav Pharmacol. 22(1), 71-5.
14. Busanello A., Peroza L.R., Wagner C., Sudati J.H., Pereira R.P., Prestes A.d.S., 2012. Resveratrol reduces vacuous chewing movements induced by acute treatment with fluphenazine. Pharmacol Biochem Behav. 101(2), 307-10.
15. Peroza L.R., Busanello A., Leal C.Q., Röpke J., Boligon A.A., Meinerz D., 2013. Bauhinia forficata prevents vacuous chewing movements induced by haloperidol in rats and has antioxidant potential in vitro. Neurochem Res. 38(7), 89-96.
16. Rasool M., Malik A., Qureshi M.S., Manan A., Pushparaj P.N., Asif M., 2014. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid Based Complement Alternat Med. 2014(1), 979730.
17. Rivlin R.S., 2001. Historical perspective on the use of garlic. J Nutr. 131(3), 951S-4S.
18.Ashfaq F., Ali Q., Haider M., Hafeez M., Malik A., 2021. Therapeutic activities of garlic constituent phytochemicals. Biol Clin Sci Res. 2021(1), e007.
19. Asgharpour M., Khavandegar A., Balaei P., Enayati N., Mardi P., Alirezaei A., 2021. Efficacy of oral administration of Allium sativum powder “garlic extract” on lipid profile, inflammation, and cardiovascular indices among hemodialysis patients. Evid Based Complement Alternat Med. 2021(1), 6667453.
20. Edres H.A., Taha N.M., Lebda M.A., Elfeky M.S., 2021. The potential neuroprotective effect of allicin and melatonin in acrylamide-induced brain damage in rats. Environ Sci Pollut Res. 28(41), 58768-80.
21. Ried K., 2016. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. J Nutr. 146(2), 389S-96S.
22. Aslani N., Entezari M.H., Askari G., Maghsoudi Z., Maracy M.R., 2016. Effect of garlic and lemon juice mixture on lipid profile and some cardiovascular risk factors in people 30-60 years old with moderate hyperlipidaemia: a randomized clinical trial. Int J Prev Med. 7(1), 95.
23. Li G., Ma X., Deng L., Zhao X., Wei Y., Gao Z., 2015. Fresh garlic extract enhances the antimicrobial activities of antibiotics on resistant strains in vitro. Jundishapur J Microbiol. 8(5), e14814.
24. Guan M.J., Zhao N., Xie K.Q., Zeng T., 2018. Hepatoprotective effects of garlic against ethanol-induced liver injury: A mini-review. Food Chem Toxicol. 111(4), 67-73.
25. Londhe V., Gavasane A., Nipate S., Bandawane D., Chaudhari P., 2011. Role of garlic (Allium sativum) in various diseases: An overview. Angiogenesis. 12(13), 129-34.
26. Bianchini F., Vainio H., 2001. Allium vegetables and organosulfur compounds: do they help prevent cancer? Environ Health Perspect. 109(9), 893-902.
27. Durak İ., Aytaç B., Atmaca Y., Devrim E., Avcı A., Erol Ç., 2004. Effects of garlic extract consumption on plasma and erythrocyte antioxidant parameters in atherosclerotic patients. Life Sci. 75(16), 1959-66.
28. Tabeshpour J., Mehri S., Abnous K., Hosseinzadeh H., 2019. Neuroprotective Effects of Thymoquinone in Acrylamide-Induced Peripheral Nervous System Toxicity Through MAPKinase and Apoptosis Pathways in Rat. Neurochem Res. 44(5), 1101-12.
29. Lo Pachin R., Ross J., Reid M.L., Das S., Mansukhani S., Lehning E., 2002. Neurological evaluation of toxic axonopathies in rats: acrylamide and 2, 5-hexanedione. Neurotoxicology. 23(1), 95-110.
30. Taha N., Korshom M., Mandour A., Sadek K., 2013. Effects of garlic and acrylamide on some antioxidant enzymes. Glob J Med Plant Res. 1(1), 90-4.
31. Ghasemzadeh Rahbardar M., Hemadeh B., Razavi B.M., Eisvand F., Hosseinzadeh H., 2022. Effect of carnosic acid on acrylamide induced neurotoxicity: in vivo and in vitro experiments. Drug Chem Toxicol. 45(4), 1528-35.
32. Mannaa F., Abdel‐Wahhab M.A., Ahmed H.H., Park M.H., 2006. Protective role of Panax ginseng extract standardized with ginsenoside Rg3 against acrylamide‐induced neurotoxicity in rats. Journal of Applied Toxicology: An International Journal. 26(3), 198-206.
33. Miller M.S., Spencer P.S., 1985. The mechanisms of acrylamide axonopathy. Annu Rev Pharmacol Toxicol. 25(6), 43-66.
34. Exon J., 2006. A review of the toxicology of acrylamide. J Toxicol Environ Health B. 9(5), 397-412.
35. Hee P.T.E., Liang Z., Zhang P., Fang Z., 2024. Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Control. 158(3), 110236.
36. Lo Pachin R.M., 2005. Acrylamide neurotoxicity: neurological, morhological and molecular endpoints in animal models. Chemistry and safety of acrylamide in food. 561, 21-37.
37. Esmaeelpanah E., Rahmatkhah A., Poormahmood N., Razavi B.M., Hasani F.V., Hosseinzadeh H., 2015. Protective effect of green tea aqueous extract on acrylamide induced neurotoxicity. Jundishapur J Nat Pharm Prod. 10(2), e18406.
38. Motamedshariaty V.S., Amel Farzad S., Nassiri-Asl M., Hosseinzadeh H., 2014. Effects of rutin on acrylamide-induced neurotoxicity. Daru J Pharm Sci. 22,1-9.
39. Mirzavi F., Rajabian A., Hosseini H., Hosseini A., 2024. Herniarin ameliorates acrylamide-induced neurotoxicity in rat: involvement of neuro-inflammation and acetylcholinesterase. Nat Prod Res. 17,1-8.
40. Ghareeb D.A., Khalil A.A., Elbassoumy A.M., Hussain H.M., Abdo-sraiaa M.M., 2010. Ameliorated effects of garlic (Allium sativum) on biomarkers of subchronic acrylamide hepatotoxicity and brain toxicity in rats. Toxicol Environ Chem. 92(7), 1357-72.
41. Onem G., Aral E., Enli Y., Oguz E.O., Coskun E., Aybek H., 2006. Neuroprotective effects of L-carnitine and vitamin E alone or in combination against ischemia-reperfusion injury in rats. J Surg Res. 131(1), 124-30.