Optimization of Rosmarinic Acid Production in Basil (Ocimum basilicum) via Salicylic Acid and BAP Elicitation In vitro
Fatemeh Yahyaei
1
(
Department of Horticulture, Da. C., Islamic Azad University, Damghan, Iran
)
Bahareh Kashefi
2
(
Department of Horticulture, Da. C., Islamic Azad University, Damghan, Iran
)
Mohammad Moghaddam
3
(
Professor, Department of Horticultural Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
)
Keywords: BAP, Tissue culture, Salicylic acid, Rosmarinic acid, Secondary metabolites, Mints.,
Abstract :
Basil (Ocimum basilicum), a member of the mint family (Lamiaceae), is a significant medicinal plant with potential applications in treating various diseases. This plant contains diverse phenolic compounds, with rosmarinic acid being the most abundant. One method to enhance the production of secondary metabolites such as rosmarinic acid in tissue culture involves the use of biological and non-biological stimuli. In this study, the effects of different concentrations of salicylic acid (0, 100, 200, 300, 400, and 500 μM) and BAP (0, 1, 2, 3, 4, and 5 mg L-1) on rosmarinic acid production were evaluated in vitro using a factorial design in a completely randomized format with three replications. The results revealed that all treatments significantly increased rosmarinic acid production compared to the control. The highest rosmarinic acid production (25.14 mg g-1 dry weight) was observed at 200 μM salicylic acid, while the lowest production occurred at 1, 2, and 3 mg L-1 BAP hormone levels. Overall, salicylic acid had a greater impact on rosmarinic acid production than BAP. It appears that hormonal treatments enhance this compound in basil by influencing growth processes, metabolism, and the activity of enzymes involved in rosmarinic acid biosynthesis.
1. Emad M., 2018. Identification of forest and pasture medicinal and industrial plants and their uses. Rural Development Institute: Iran.
2. Kumar J., Gupta P.K., 2008. Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotech Rep. 2, 93-112.
3. Omid Beigi R., 2000. The production and processing of medicinal plants, Vol 3. Astan Quds Razavi: Iran.
4. Javanmardi J., Stushnoff C., Locke E., Vivanco J.M., 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 83, 547-550.
5. Park S.U., Uddin M.R., Xu H., Kim Y.K., Lee S.Y., 2008. Biotechnological applications for rosmarinic acid production in plant. Afr J Biotechnol. 7(25), 4959-4965.
6. Pushpagandan P., Bradu L., Basil. In: Chadha K.L., Gupta R., 1995. eds. Medicinal and aromatic plants, India: Malhotra publishing House. pp. 627-658.
7. Bicca Dode L., Bobrowski V.L., Braga E.J.B., Seixas F.K., Schuch M.W., 2003. In vitro propagation of Ocimum basilicum L. (Lamiaceae). Acta Sci. 2, 435- 437.
8. Yavarian M., Behrouznam B., Zakerin A.R., 2012. The role of in vitro culture on secondary metabolites of medicinal plants. The third national conference of agricultural science and food industry. Fasa, Iran.
9. Jakovljević D., Stanković M., Warchoł M., Skrzypek E., 2022. Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: a review. Plant Cell, Tissue Organ Cul. 149 (1-2), 61-79.
10. Mathew R., Sankar P.D., 2013. Plant cell culture technology and its entree into the world of ocimum. Int J Pharm Pharm Sci. 5(2), 975-1491.
11. Pistelli L., Giovannini A., Ruffoni B., Bertoli A., Pistelli L., 2010. Hairy root cultures for secondary metabolites production. Adv Exp Med Biol. 698, 167- 184. https:// doi. org/10.1007/978-1-4419-7347-4_13.
12. Dode L.C., Bobrowski V.L. Braga E.J.B., Seixas F.K., Schunch W., 2003. In vitro propagation of Ocimum basilicum L. Maringa. 25, 435-437.
13. Sadeghian S., Ranjbar G.A., Kazemitabar S.K., 2014. Consideration and Selection of Suitable Hormonal Composition for in vitro Shoot Regeneration and Propagation of Ocimum basilicum L. J Crop Breed. 6(13), 40-48.
14. Kumar A., Jhanwar B., 2013. In Vitro Micropropagation of Ocimum Americanum (L.): A Wild But Important Medicinal Plant. J Pharm Bioanal Sci. 2(3), 29-32.
15. Ghanati F., Rajabbeigi E., Sefidkon F. Abdolmalek P., 2006. Investigating the Changes of Essential Oil of Ocimum basilicum L. in Response to Electromagnetic Field. Iran J Med. Aroma Plants. 22(3), 341- 350.
16. Bais H.P., Walker T.S., Schweizer H.P., Vivanco J.M., 2002. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem. 40, 983–995.
17. Kintzios S., Makri O., Panagiotopoulos E., Scapeti M., 2003. In vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum L.). Biotech Lett. 25, 405–408.
18. Kim H., Chen F., Wang X., Rajapakse N.C., 2005. Effect of Chitosan on the Biological Properties of Sweet Basil (Ocimum basilicum L.). J Agri Food Chem. 53(9), 696-701.
19. Hakkima F.L., Kalyani S., Essa M., Girija S., Song H., 2011a. Production of rosmarinic acid in Ocimum sanctum (L.) cell suspension cultures by the influence of growth regulators. Int J Biol Medi Res. 2(4), 1158 -1161.
20. Hakkima F.L., Kalyani S., Essa M., Girija S., Song H., 2011b. Production of Rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and ethyl jasmonate. Int J Biol Med Res. 2(4), 1070 -1074.
21. Mathew R., Sankar P.D., 2012. Effect of methyl jasmonate and chitosan on growth characteristics of Ocimum basilicum L., Ocimum sanctum L. and Ocimum gratissimum L. cell suspension cultures. Afr J Biotech. 11(21), 4759-4766.
22. Mathew R., Sankar P.D., 2014. Comparison of major secondary metabolites quantified in elicited cell cultures, non- elicited cell cultures, callus cultures and field grown plants of ocimum. Int J Pharm Pharm Sci. 6(2), 975-1491.
23. Raoufa A. I., Abdel Rahman R.A.I., El-Wakil H., Abdelsalam N.R., Elsaadany R.M.A., 2015. In vitro production of rosmarinic acid from basil (Ocimum basilicum L.) and lemon balm (Melissa officinalis L.). Middle East J Appl Sci. 5(1), 47-51.
24. Acıkgoz M.A., 2020. Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Ind Crop Prod. 148, 112278. ttps:// doi. org/ 10. 1016/j. indcr op. 2020. 112278.
25. Acıkgoz M.A., 2021. Effects of sorbitol on the production of phenolic compounds and terpenoids in the cell suspension cultures of Ocimum basilicum L. Biologia. 76(1), 395–409. https:// doi. org/ 10. 2478/ s11756- 020- 00581-0.
26. Yuan Y., Wang Z., Zhang, X., 2020. Enhancing rosmarinic acid production in basil (Ocimum basilicum) through salicylic acid treatment. Plant Cell, Tissue Organ Cul. 142(3), 507–516. https://doi.org/10.1007/s11240-020-01834-0.
27. Mishra A., Pandey P., Gupta, R., 2018. Salicylic acid as a potent elicitor for enhancing secondary metabolite production in medicinal plants. J Plant Growth Regul. 37(3), 888–900. https://doi.org/10.1007/s00344-018-9814-5.
28. Sharma S., Dubey S., Kumar, A., 2019. Elicitation strategies for enhanced production of bioactive compounds in medicinal plants. Biotechnol Adv. 37(1), 30–45. https://doi.org/10.1016/j.biotechadv.2018.11.001.
29. Saha P., Jha S., Ghosh S., 2020. The impact of salicylic acid on secondary metabolite production in basil (Ocimum basilicum). Phytochem Rev. 19(4), 717–730. https://doi.org/10.1007/s11101-019-09612-1.
30. Chakraborty D., Ghosh S., Das P., 2017. Influence of plant growth regulators on the in vitro production of secondary metabolites. Plant Biotechnol Rep. 11(3), 273–281. https://doi.org/10.1007/s11816-017-0426-7.
31. Liu Y., Wang Y., Zhang X., 2019. Synergistic effects of plant growth regulators and elicitors on secondary metabolite production in medicinal plants. Ind Crops Prod. 141, 111804. https://doi.org/ 10.1016/j. indcrop.2019.111804.
32. Assaf M., Korkmaz A., Karaman Ş., Kulak M., 2022. Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. S Afr J Bot. 144, 480–493. https://doi.org/10.1016/j.sajb.2021.10.030.
33. Öztürk M., E. Duru M., Ince B., Harmandar M., Topçu G., 2010. A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts. Food Chem. 123, 1352–1356.
34. Vlot A. C., Klessig D. F., Park S. W., 2009. Salicylic acid and its function in plant defense. Plant Signal Behav. 4(6), 593-605.
35. Shah J., 2003. The salicylic acid loop in plant defense. Curr Opin Plant Biol. 6(4), 365-371.
36. Mueller M.J., Brodschelm W., Spannagl E., Zenk M.H., 1993. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America. 90, 7490–7494.
37. Raman V., Ravi S., 2011. Effect of salicylic acid and methyl jasmonate on antioxidant systems of Heamatococcus pluvialis. Acta Physiol Plant. 33, 1043-1049.
38. Bagal U.R., Leebens mack J.H., Walter Lorenz W., Dean J.F.D., 2012. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Gen. 13(3), 1471- 2164.
39. Klessig D.F., Malamy J., 1994. The salicylic acid signal in plants. Plant Mol Biol. 26(3), 1439-1452.
40. Abdekhani S., Solouki M., 2016. Changes in Phenolic Compounds, Anthocyanin and Antioxidant Enzymes in Different Growth Stages Basil (Ocimum basilicum L), Using Growth Regulators. J Med Plants. 15(58), 164-175.
41. Tortosa V.P., Lopes-orenes A., Martinez_perez A., Ferre M.A. Calderon A.A., 2012. Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food chem. 130(2), 362-369.
42. Weitzel C., Petersen M., 2010. Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L. Planta. 232, 731–742.
43. Jiao M., Cao R., Chen H., Hao W., Dong J., 2012. Effects of salicylic acid on synthesis of rosmarinic acid and related enzymes in the suspension cultures of Salvia miltiorrhiza. Sheng Wu Gong Cheng Xue Bao. 28(3), 320-328.
44. Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A., 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 6, 462.
45. Zhang Y., Li, X., 2018. Impact of salicylic acid on secondary metabolite production in medicinal plants. Front Plant Sci. 9, 1971.
46. Nadeem M., Hameed M., 2019. Impact of cytokinin and other growth regulators on medicinal plant production. Plant Growth Regul. 88(3), 245–260. https://doi.org/10.1007/s10725-019-00505-6.
47. Aremu A.O., Bairu M.W., Szuˇcova L., Doleˇzal K., Finnie J.F., Van Staden J., 2012. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated ‘Williams’ banana. Acta Physiol Plant. 34, 2265–2273.
48. Karalija E., Paric A., 2011. The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris L. Biol Nyssana. 2(1), 29-35.
49. Kintzios S., Nikolaou A., Skoula M., 1999. Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticosa leaf callus cultures. Plant Cell Rep. 18(6), 462-466.
50. Rawat J.M., Rawat B., Chandra M., Nautyal S., 2013. Influence of plant growth regulators on indirect shoot organogenesis and secondary metabolite production in Aconitum violaceum Jacq. Afr J Biotechnol. 12 (44), 6287-6293.