ارزیابی پایداری عملکرد دانه در لاینهای امیدبخش ماش (Vigna radiata L. Wilczek var. radiata)
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیرضا سخاوت 1 , فرامرز سیدی 2 * , مجید رخشنده رو 3
1 - مربی پژوهش بخش زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی آباد دزفول، سازمان تحقیقات، آموزش و ترویج کشاورزی، صفیآباد، ایران
2 - مربی پژوهش بخش زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران
3 - مربی پژوهش بخش زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران
کلید واژه: رقم, ژنوتیپ, ماش, تجزیه امی, شاخص پایداری,
چکیده مقاله :
مطالعه دقیق ماهیت برهمکنش ژنوتیپ با محیط، امکان شناسایی ژنوتیپهای پایدار و سازگار را برای بهنژادگرها فراهم میآورد و همواره یکی از موضوعات مهم در تولید و آزادسازی ارقام جدید پایدار و پرمحصول در طرحهای به نژادی بوده است. بهمنظور بررسی سازگاری عملکرد و اجزای عملکرد هفت لاین امیدبخش ماش بههمراه شاهد (رقم پرتو)، سه آزمایش در قالب طرح بلوک های کامل تصادفی در سه تکرار در سه منطقه ازکشور یعنی خوزستان (مرکز تحقیقات کشاورزی صفیآباد دزفول)، گلستان (ایستگاه تحقیقات کشاورزی گنبد) و فارس (ایستگاه تحقیقات کشاورزی زرقان) در سال 1394-1393 بهمدت دو سال اجرا شد. هر کرت آزمایشی شامل چهار خط 4 متری بود. صفات مورد بررسی عبارت بودند از: تعداد شاخه در بوته، تعداد غلاف در بوته، تعداد دانه در غلاف، وزن صد دانه، طول بوته و عملکرد دانه. تجزیه واریانس مرکب داده ها انجام و به دلیل معنی دار شدن اثر متقابل ژنوتیپ و محیط و لذا پاسخ مختلف ژنوتیپها نسبت به محیط های مختلف، برای تعیین سازگاری و پایداری ژنوتیپ ها نسبت به محاسبه آماره های پایداری اقدام شد. برای انجام این کار آماره های پایداری واریانس محیطی رومر، ضریب تغییرات محیطی فرانسیس و کاننبرگ، ضریب رگرسیون فینلی و ویلکینسون برای تعیین ژنوتیپ های پایدار محاسبه شدند. همچنین، تجزیه AMMI انجام شد. بر اساس ضریب تغییرات فرانسیس کاننبرگ ژنوتیپ های VC6368(46-40-4) و VC6371-94 و بر اساس ضریب رگرسیون فینلی و ویلکینسون VC6469 و VC3960-88 پایدار بودند. از نظر ضریب تغییرات درون مکانی نیز ژنوتیپ های VC3960-88 و VC6368(46-40-4) پایدار بودند. با توجه به نتایج حاصل از تجزیه پایداری و در نظر گرفتن عملکرد دانه، وزن دانه و صفات مطلوب، ژنوتیپ های VC6371، VC6368(46-40-4) و VC3960-88 جهت بررسی های بیشتر انتخاب شدند.
Accurate study on the nature of genotype by environment interaction enables the identification of stable and adaptable genotypes for breeders and it has always been an important issue to address by breeders for the production and release of new sustainable and high-yielding varieties in breeding projects. To study the stability of yield and yield components of seven promising lines of mungbean as well as the check (Parto), three experiments were conducted in an RCBD with three replications in three regions of the country, i. e. Khuzestan (Agricultural and Natural Resources Research and Education Center of Safi Abad, Dezful), Golestan (Agricultural Experiment Station of Gonbad) and Fars (Agricultural Research Station of Zarghan) in 2014-2015 for two years. Each plot consisted of four four-meter-long rows. The traits studied were: the number of branches per plant, pods per plant, seeds per pod, 100-seed weight, plant length, and seed yield. A combined analysis of variance was performed. Because of the significant genotype by environment interaction and, as a result, the different responses of genotypes to various environments, stability indices were calculated to determine the stability of genotypes. To do this, Romer's environment variance, Francis and Kannenberg's environmental CV, and the regression coefficient of Finley and Wilkinson were determined. AMMI analysis was also performed. Based on Francis and Kannenberg's environmental CV and coefficient of Finley and Wilkinson genotypes VC6368 (46-40-4) and VC6371-94, and VC6469 and VC3960 were stable, respectively. Based on the CV of intra-location, VC3960-88 and VC6368 (46-40-4) were stable. According to stability analysis results and considering seed yield, seed weight and other suitable characters, genotypes VC6371, VC6368 (46-40-4) and VC3960-88 were selected for further studies.
Asfaw, , F. Gurum, F. Alemayehu, and Y. Rezene. 2012. Analysis of multi-environment grain yield trials in mung bean vigna radiata (L.) Wilczek based on GGE biplot in Southern Ethiopia. Journal of Agricultural Science and Technology. 14: 389-398. doi: 20.1001.1.16807073.2012.14.2.5.7
Ataei, R., A. Moghaddam, A. Azari- Nasrabad, K. Chabok, A. Saberi, B. Zand, S.A. Tabatabaee, K. Miri, V. Rahjoo, and M. Razmi- Charmkhoran. 2019. Forage yield stability of foxtail millet (Setaria italica) promising lines. Iranian Journal of Field Crop Science. 49(4): 161-173. (In Persian). doi: 10.22059/IJFCS.2018. 248607.654426
Babaei, H.R., H. Sabzi, and N. Razmi. 2018. Application of AMMI approach in “Genotype x Environment” interaction analysis and determining yield stability of soybean pure lines Glycine max (L.) Merril. Iranian Journal of Field Crop Science. 50(1): 129-137. (In Persian). doi: 22059/IJFCS.2018.240594.654374
Badooei Delfard, R., K. Mostafavi, and A. Mohammadi. 2016. Genotype– environment interaction and yield stability of winter barley varieties (Hordeum vulgare). Journal of Crop Breeding. 3(2): 591-601. doi: 20.1001.1.22286128. 1395.8.20.1.8
Baraki, F., Gebregergis, Z., Belay, Y., Berhe, M., and H. Zibelo. 2020. Genotype x environment interaction and yield stability analysis of mungbean (Vigna radiata (L.) Wilczek) genotypes in Northern Ethiopia. Cogent Food Agriculture. 6: 1729581. doi: 10.1080/23311932.2020.1729581
Barati, A., S.A. Tabatabaei, M. Mahlouji, and M.H. Saberi. 2019. Evaluation of grain yield and its stability in promising barley lines in saline areas. Journal of Agricultural Knowledge and Sustainable Production. 29(1): 1-13. (In Persian).
Barati, A., Zali, H., Lakzadeh, I., Koohkan, S., Jafarby, J., Hosseinpour, A., Jabbari, M., Marzoghiyan, A., and M. Kheirgo. 2021. Evaluation of yield stability of barley promising lines using AMMI and SHMM methods. Cereal Research. 10 (3): 245-257. doi: 10.22124/cr.2021.1834.1637
Bavandpori, F., J. Ahmadi, and S.M. Hossaini. 2015. Yield stability analysis of bread wheat lines using AMMI model. Agricultural Communications. 3(1): 8-15.
Dawson, J.C., P. Rivière, J.F. Berthellot, F. Mercier, P.D. Kochko, N. Galic, , S. Pin, E. Serpolay, M. Thomas, and S. Giuliano. 2011. Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability. 3(8): 1206-1223. org/10.3390/su3081206
De Leon, N., J.L. Jannink, J.W. Edwards, and S.M. Kaeppler. 2016. Introduction to a special issue on genotype by environment interaction. Crop Science. 56(5): 2081-2089. doi:10.2135/cropsci2016.07.0002in
Etaati, M., M. R. Ardakani, M. Bagheri, F. Paknejad and F. Golzardi. 2023. Grain yield adaptability and stability of quinoa (Chenopodium quinoa) genotypes using different stability indices. Journal of Crop Ecophysiology. 17(1): 1-14. (in Persian). doi:10.30495/JCEP.2023.1935024.1815
Fikere, M., T. Tadesse, and T. Letta. 2008. Genotype-environment interactions and stability parameters for grain yield of faba bean (Vicia faba) genotypes grown in South Eastern Ethiopia. International Journal of Sustainable Crop Production. 3(6): 80-87.
Francis, T.R., and L.W. Kannenberg. 1987. Yield stability in short-season maize, I. a descriptive method for genotypes. Canadian Journal of Plant Science. 58: 1029-1034. doi: 10.4141/cjps78-157
Islam, M.R., B.C. Sarker, M.A. Alam, T. Javed, M.J. Alam, M.S.U. Zaman, M.G. Azam, R. Shabbir, A. Raza, M. Habib-ur-Rahman, E.S. Dessoky, and M.S. Islam. 2021. Yield stability and genotype environment interaction of water deficit stress tolerant mungbean (Vigna radiate Wilczak) genotypes of Bangladesh. Agronomy. 11(11): 2136. doi: 10.3390/agronomy11112136
Khomari, A., K. Mostafavi, and A. Mohammadi. 2018. Evaluation of grain yield stability of winter barley (Hordeum vulgare) cultivars using the main effects of additive and multiplicative interaction effects. Journal of Crop Production. 11(2): 185-195. (In Persian). doi:10.22069/EJCP.2018.13567.2043
Majnun Hosseini, N. 2015. Grain Legume Production. Fifth edition. Tehran University Jihad Publications. (In Persian). 283 p.
Moumeni, A., A. Mohaddesi, M. Amo-oughli-Tabari, F. Tavassoli-Larijani, and V. Khosravi. 2019. Stability analysis and genotype × environment interaction for grain yield of rice (Oryza sativa ) promising breeding lines. Iranian Journal of Crop Sciences. 20(4): 329-344. (In Persian). doi: 20.1001.1.15625540.1397. 20.4.5.4
Purchase, J., H. Hatting, and C. van Deventer. 2000. Genotype× environment interaction of winter wheat (Triticum aestivum) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil. 17(3): 101-107. doi.org/10.1080/02571862.2000.10634877
Sadeghzadeh, B., R. Mohammadi, H. Ahmadi, G. Abedi Asl, M.M. Ahmadi, M. Mohammadfam, and N. Bahrami. 2018. Evaluation of compatibility and stability of grain yield of durum wheat lines under rainfed conditions using GGE Biplot and AMMI. Environmental Stresses in Crop Science. 11(2): 241-260. (In Persian). doi.org/10.22077/escs.2018.381.1075
Sadeghzadeh, B., R. Mohammadi, H. Ahmadi, G. Abedi-Asl, G. Khalilizadeh, M. Mohammadfam, N. Bahrami, H. Ismaeilzadeh, M. S. Khaledian, and M. Hasanpour-hosni. 2017. Efficiency of GGE Biplot and AMMI analysis for adaptability and grain yield stability of durum wheat lines under different environments. Journal of Crop Ecophysiology. 11(2): 413-436. (In Persian).
Tarinezhad, A. 2017. Grain yield stability of some bread wheat cultivars introduced in moderate and cold area of Iran. Journal of Crop Ecophysiology. 11(2): 437-452. (In Persian).
Temesgen, T., G. Keneni, T. Sefera, and M. Jarso. 2015. Yield stability and relationships among stability parameters in faba bean (Vicia faba) genotypes. The Crop Journal. 3(3): 258-268. doi: 10.1016/j.cj.2015.03.004
Wricke, G. 1962. Uber eine methods Zur Erfassung der okologischen sterubreite in Fledversuchen. Zahlen Pflanzuecht. 42: 22-96.
Yan, W., and L.A. Hunt. 2002. Biplot analysis of multi-environment trial data. Genetics, Genomics Plant Breeding Journal. 19: 289-303. doi.org/10.1079/ 9780851996011.0289
Yan, W., and M.S. Kang. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press. doi:10.1201/9781420040371
Yau, S.K., and J. Hamblin. 1994. Relative yield as a measure of entry performance in variable environments. Crop Science. 34: 813-817. doi:10.2135/cropsci1994. 0011183X003400030038X
Zhang, P.P., S. Hui, X.W. Ke, X.J. Jin, L.H. Yin, L. Yang, Q. Yang, S. Wang, N.J. Feng, and D.F. Zheng. 2016. GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum) genotypes. Journal of Integrative Agriculture. 15(6): 1218-1227. doi:10.1016/S2095-3119 (15)61157-1
_||_Asfaw, , F. Gurum, F. Alemayehu, and Y. Rezene. 2012. Analysis of multi-environment grain yield trials in mung bean vigna radiata (L.) Wilczek based on GGE biplot in Southern Ethiopia. Journal of Agricultural Science and Technology. 14: 389-398. doi: 20.1001.1.16807073.2012.14.2.5.7
Ataei, R., A. Moghaddam, A. Azari- Nasrabad, K. Chabok, A. Saberi, B. Zand, S.A. Tabatabaee, K. Miri, V. Rahjoo, and M. Razmi- Charmkhoran. 2019. Forage yield stability of foxtail millet (Setaria italica) promising lines. Iranian Journal of Field Crop Science. 49(4): 161-173. (In Persian). doi: 10.22059/IJFCS.2018. 248607.654426
Babaei, H.R., H. Sabzi, and N. Razmi. 2018. Application of AMMI approach in “Genotype x Environment” interaction analysis and determining yield stability of soybean pure lines Glycine max (L.) Merril. Iranian Journal of Field Crop Science. 50(1): 129-137. (In Persian). doi: 22059/IJFCS.2018.240594.654374
Badooei Delfard, R., K. Mostafavi, and A. Mohammadi. 2016. Genotype– environment interaction and yield stability of winter barley varieties (Hordeum vulgare). Journal of Crop Breeding. 3(2): 591-601. doi: 20.1001.1.22286128. 1395.8.20.1.8
Baraki, F., Gebregergis, Z., Belay, Y., Berhe, M., and H. Zibelo. 2020. Genotype x environment interaction and yield stability analysis of mungbean (Vigna radiata (L.) Wilczek) genotypes in Northern Ethiopia. Cogent Food Agriculture. 6: 1729581. doi: 10.1080/23311932.2020.1729581
Barati, A., S.A. Tabatabaei, M. Mahlouji, and M.H. Saberi. 2019. Evaluation of grain yield and its stability in promising barley lines in saline areas. Journal of Agricultural Knowledge and Sustainable Production. 29(1): 1-13. (In Persian).
Barati, A., Zali, H., Lakzadeh, I., Koohkan, S., Jafarby, J., Hosseinpour, A., Jabbari, M., Marzoghiyan, A., and M. Kheirgo. 2021. Evaluation of yield stability of barley promising lines using AMMI and SHMM methods. Cereal Research. 10 (3): 245-257. doi: 10.22124/cr.2021.1834.1637
Bavandpori, F., J. Ahmadi, and S.M. Hossaini. 2015. Yield stability analysis of bread wheat lines using AMMI model. Agricultural Communications. 3(1): 8-15.
Dawson, J.C., P. Rivière, J.F. Berthellot, F. Mercier, P.D. Kochko, N. Galic, , S. Pin, E. Serpolay, M. Thomas, and S. Giuliano. 2011. Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability. 3(8): 1206-1223. org/10.3390/su3081206
De Leon, N., J.L. Jannink, J.W. Edwards, and S.M. Kaeppler. 2016. Introduction to a special issue on genotype by environment interaction. Crop Science. 56(5): 2081-2089. doi:10.2135/cropsci2016.07.0002in
Etaati, M., M. R. Ardakani, M. Bagheri, F. Paknejad and F. Golzardi. 2023. Grain yield adaptability and stability of quinoa (Chenopodium quinoa) genotypes using different stability indices. Journal of Crop Ecophysiology. 17(1): 1-14. (in Persian). doi:10.30495/JCEP.2023.1935024.1815
Fikere, M., T. Tadesse, and T. Letta. 2008. Genotype-environment interactions and stability parameters for grain yield of faba bean (Vicia faba) genotypes grown in South Eastern Ethiopia. International Journal of Sustainable Crop Production. 3(6): 80-87.
Francis, T.R., and L.W. Kannenberg. 1987. Yield stability in short-season maize, I. a descriptive method for genotypes. Canadian Journal of Plant Science. 58: 1029-1034. doi: 10.4141/cjps78-157
Islam, M.R., B.C. Sarker, M.A. Alam, T. Javed, M.J. Alam, M.S.U. Zaman, M.G. Azam, R. Shabbir, A. Raza, M. Habib-ur-Rahman, E.S. Dessoky, and M.S. Islam. 2021. Yield stability and genotype environment interaction of water deficit stress tolerant mungbean (Vigna radiate Wilczak) genotypes of Bangladesh. Agronomy. 11(11): 2136. doi: 10.3390/agronomy11112136
Khomari, A., K. Mostafavi, and A. Mohammadi. 2018. Evaluation of grain yield stability of winter barley (Hordeum vulgare) cultivars using the main effects of additive and multiplicative interaction effects. Journal of Crop Production. 11(2): 185-195. (In Persian). doi:10.22069/EJCP.2018.13567.2043
Majnun Hosseini, N. 2015. Grain Legume Production. Fifth edition. Tehran University Jihad Publications. (In Persian). 283 p.
Moumeni, A., A. Mohaddesi, M. Amo-oughli-Tabari, F. Tavassoli-Larijani, and V. Khosravi. 2019. Stability analysis and genotype × environment interaction for grain yield of rice (Oryza sativa ) promising breeding lines. Iranian Journal of Crop Sciences. 20(4): 329-344. (In Persian). doi: 20.1001.1.15625540.1397. 20.4.5.4
Purchase, J., H. Hatting, and C. van Deventer. 2000. Genotype× environment interaction of winter wheat (Triticum aestivum) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil. 17(3): 101-107. doi.org/10.1080/02571862.2000.10634877
Sadeghzadeh, B., R. Mohammadi, H. Ahmadi, G. Abedi Asl, M.M. Ahmadi, M. Mohammadfam, and N. Bahrami. 2018. Evaluation of compatibility and stability of grain yield of durum wheat lines under rainfed conditions using GGE Biplot and AMMI. Environmental Stresses in Crop Science. 11(2): 241-260. (In Persian). doi.org/10.22077/escs.2018.381.1075
Sadeghzadeh, B., R. Mohammadi, H. Ahmadi, G. Abedi-Asl, G. Khalilizadeh, M. Mohammadfam, N. Bahrami, H. Ismaeilzadeh, M. S. Khaledian, and M. Hasanpour-hosni. 2017. Efficiency of GGE Biplot and AMMI analysis for adaptability and grain yield stability of durum wheat lines under different environments. Journal of Crop Ecophysiology. 11(2): 413-436. (In Persian).
Tarinezhad, A. 2017. Grain yield stability of some bread wheat cultivars introduced in moderate and cold area of Iran. Journal of Crop Ecophysiology. 11(2): 437-452. (In Persian).
Temesgen, T., G. Keneni, T. Sefera, and M. Jarso. 2015. Yield stability and relationships among stability parameters in faba bean (Vicia faba) genotypes. The Crop Journal. 3(3): 258-268. doi: 10.1016/j.cj.2015.03.004
Wricke, G. 1962. Uber eine methods Zur Erfassung der okologischen sterubreite in Fledversuchen. Zahlen Pflanzuecht. 42: 22-96.
Yan, W., and L.A. Hunt. 2002. Biplot analysis of multi-environment trial data. Genetics, Genomics Plant Breeding Journal. 19: 289-303. doi.org/10.1079/ 9780851996011.0289
Yan, W., and M.S. Kang. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press. doi:10.1201/9781420040371
Yau, S.K., and J. Hamblin. 1994. Relative yield as a measure of entry performance in variable environments. Crop Science. 34: 813-817. doi:10.2135/cropsci1994. 0011183X003400030038X
Zhang, P.P., S. Hui, X.W. Ke, X.J. Jin, L.H. Yin, L. Yang, Q. Yang, S. Wang, N.J. Feng, and D.F. Zheng. 2016. GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum) genotypes. Journal of Integrative Agriculture. 15(6): 1218-1227. doi:10.1016/S2095-3119 (15)61157-1