بررسی وشبیه سازی طرح کنترل توان در سیستم های مخابراتی برداشت کننده انرژی
محورهای موضوعی : مهندسی مخابراتنصراله بیات 1 , آذر محمودزاده 2 , فاطمه صفایی 3
1 - گروه آموزشی برق،دانشکده برق،دانشگاه غیرانتفاعی،شیراز،ایران
2 - گروه مهندسی برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 - گروه برق دانشکده برق والکترونیک دانشگاه غیر انتفاعی شیراز ایران
کلید واژه: برداشت انرژی از محیط, ظرفیت محدود باتری, کانال محوشدگی , مخابرات بیسیم, بهینهسازی توان.,
چکیده مقاله :
در مقاله پیشرو، تلاش ما بر این است تا سیستمهای مخابراتی برداشتکننده انرژی دارای یک فرستنده، یک گیرنده را، برای یک کانال مخابراتی نویز گوسی سفید جمعشونده دارای محوشدگی مورد مطالعه قراردهیم . انرژیهای برداشتشده و محوشدگی کانال، فرایندهای مستقل وبهطور یکسان توزیع شده هستند و اطلاعات درباره انرژیهای برداشتشده و بهره کانال بهصورت ع ل ی در اختیار فرستنده قرار میگیرد. فرستنده به یک باتری قابل شارژ با ظرفیت ذخیره محدود مجهز شده است . هدف ما به دست آوردن یک طرح کنترل توان برخط است بهگونهای که متوسط نرخ ارسال داده را روی یک بازه مخابراتی با طول نامحدود بیشینه نماید.یک الگوریتم با پیچیدگی کم مبتنی بر بهینهسازی محدب آنلاین برای تضمین در دسترس بودن انرژی گره برداشتکننده انرژی و به حداکثر رساندن متوسط نرخ ارسال داده طولانیمدت پیشنهاد شده است. الگوریتم پیشنهادی، حداکثر توان انتقال را با اطلاع از وضعیت شارژ محدود میکند و توان انتقال را بر اساس اطلاعات تاریخی تخصیص میدهد. شبیهسازیهایی برای نشان دادن اثربخشی الگوریتم با در نظر گرفتن انرژی ورودی با توزیعهای متفاوت، همچنین ضرایب کانال با توزیعهای مختلف انجام شدهاست. الگوریتم پیشنهادی نسبت به همتایان خود در نرخهای برداشتکننده انرژی متفاوت، بهتر عمل میکند.
In the upcoming research, our effort is to study energy-harvesting telecommunication systems with one transmitter-one receiver for a Gaussian white noise telecommunication channel with fading. Harvested energies and channel fading are independent and identically distributed processes, and information about harvested energies and channel gain is causally provided to the transmitter. The transmitter is equipped with a rechargeable battery with limited storage capacity.Our goal is to obtain an online power control scheme that maximizes the average data transmission rate over a telecommunication interval of unlimited length. A low-complexity algorithm based on online convex optimization is proposed to guarantee the energy availability of the energy harvesting node and to maximize the long-term average data transmission rate. The proposed algorithm limits the maximum transmission power by knowing the state of charge and allocates the transmission power based on historical information. Simulations have been performed to show the effectiveness of the algorithm by considering input energy with different distributions, as well as channel coefficientswith different distributions. The proposed algorithm performs better than its peers in different energy harvesting rates.
[1] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in energy harvesting sensor networks,” ACM Transactions on Embedded Computing Systems , vol. 6, no. 4, pp. 32–es, 2007.
[2] O. Ozel and S. Ulukus, “Achieving AWGN capacity under stochastic energy harvesting,” IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6471–6483, Oct. 2012.
[3] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: Optimal policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732–1743, Sep. 2011.
[4] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless communications with energy harvesting constraints,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4808–4818, Sep. 2012.
[5] Luo, Y., Lina, P., Zhao, Y., Wang, W., & Yang, Q. “A nonlinear recursive model based optimal transmission scheduling in RF energy harvesting wireless communications”. IEEE Transactions on Wireless Communications, 19(5), 3449–3462.2020.
[6] Dong, M., Li, W., & Amirnavaei, F”.Online joint power control for two-hop wireless relay networks with energy harvesting”. IEEE Transactions on Signal Processing, 66(2), 463–478.2017.
[7] Rezaee, M., Mirmohseni, M., Aggarwal, V., & Aref, M. R. “Optimal transmission policies for multi-hop energy harvesting systems”. IEEE Transactions on Green Communications and Networking, 2(3), 751–763.2018.
[8] Baknina, A., & Ulukus, S. “Online scheduling for energy harvesting two-way channels with processing costs”. IEEE Globecom workshops (GC Wkshps) (pp. 1–6).2016
[9] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: Optimal policies,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 8,pp. 1732–1743, 2011.
[10] Shaviv, D., & Özgür, A. “Approximately optimal policies for a class of markov decision problems with applications to energy harvesting”. IEEE 15th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt) (pp. 1–8). 2017.
[11] A. Arafa, A. Baknina, and S. Ulukus, “Energy harvesting networks with general utility functions: Near optimal online policies,” in Information Theory (ISIT), IEEE International Symposium on. IEEE, pp. 809–813, 2017.
[12] “Online fixed fraction policies in energy harvesting communication systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 2975–2986, 2018.
[13] A. Zibaeenejad, J. Chen, “The Optimal Power Control Policy for an Energy Harvesting System with Look-Ahead: Bernoulli Energy Arrivals,” IEEE International Symposium on Information Theory , Paris, France.2019.
[14] A. Zibaeenejad, S. Yang, J. Chen, “On Optimal Power Control Policy for Energy Harvesting Communications with Lookahead,” IEEE International Symposium on Information Theory , Paris, France.2022.
[15] Wu, K., Tellambura, C., & Jiang, H.” Optimal transmission policy in energy harvesting wireless communications: A learning approach.” IEEE international conference on communications (pp. 1–6). 2017.
[16] Li, M., Zhao, X., Liang, H., & Fengye, H. ‘Deep reinforcement learning optimal transmission policy for communication systems with energy harvesting and adaptive mqam”. IEEE Transactions on Vehicular Technology, 68(6), 5782–5793.2019.
[17] Li, L., Zhang, X., Song, C., & Huang, Y.” Progress, challenges, and perspective on metasurfaces for ambient radio frequency
بررسی وشبیه سازی طرح کنترل توان در سیستم های مخابراتی برداشت کننده انرژی/ بیات و همکاران
نشریه تحلیل مدارها، داده ها و سامانه ها - 14
سال اول- شماره اول - بهار 1402
energy harvesting”. Applied Physics Letters, 116(6), 060501.2020.
[18] Zhang, X., Li, H.-X., & Chung, H.S.-H.” Setup-independent UHF RFID sensing technique using multidimensional differential measurement”. IEEE Internet of Things Journal, 8(13), 10509–10517.2021.
[19] Ku, M.-L., & Lin, T.-J. “Neural network-based power control prediction for solar-powered energy harvesting communications”. IEEE Internet of Things Journal, p. 1.2021.
[20] F. Amirnavaei and M. Dong, “Online power control optimization for wireless transmission with energy harvesting and storage,” IEEE Transactions on Wireless Communications, vol. 15, no. 7, pp. 4888–4901, 2016 .
Guo, Jing, and Xu Zhang. "Online power control ] 21[and optimization for energy harvesting cation system based on state of communi: Wireless Personal Communications charge.".2022 .15-1
Ulukus, S., Yener, A., Erkip, E., Simeone, O., ] 22[Zorzi, M., Grover, P., & Huang, K. .” Energy harvesting wireless communications: A review Journal on Selected of recent advances”. IEEE -360), 3(Areas in Communications, 33.381.2015 Ozel, O., Tutuncuoglu, K., Ulukus, S., & Yener, ] 23[A.” Fundamental limits of energy harvesting communications”. IEEE Communications .132.2015-126), 4(Magazine, 53 ing in energy harvesting Shahzad, K..”Schedul] 24[Doctoral systems with hybrid energy storage” (dissertation, University of Maryland, College .).2013Park Ozel, O.” Coding and scheduling in energy ] 25[(Doctoral harvesting communication systems” , College dissertation, University of Maryland .).2015Park Roundy, S. J. “ Energy scavenging for wireless ] 26[sensor nodes with a focus on vibration to Doctoral dissertation, ( ”electricity conversion..2003University of California, Berkeley) L., Rabaey, J. M., Ammer, M. J., Da Silva, J. ] 27[PicoRadio supports Patel, D., & Roundy, S. “low power wireless networking. -ad hoc ultra.48.2000-42), 7(, 33Computer” Microstrain Press Release. “Microstrain wins ] 28[harvesting -navy contract for developing energytrain.com/ http://www.microswireless sensors.”.65.aspx, July 2006-news/article Paradiso, J. A., & Starner, T.”Energy ] 29[scavenging for mobile and wireless ), 1(electronics”. IEEE Pervasive computing, 4.27.2005-18 Raghunathan, V., Schurgers, C., Park, S., & ] 30[ware wireless a-Srivastava, M. B. “Energymicrosensor networks”. IEEE Signal processing .50.2002-40), 2(magazine, 19 Sudevalayam, S., & Kulkarni, P. “Energy ] 31[harvesting sensor nodes: Survey and implications”. IEEE Communications Surveys-443), 3(13Tutorials, & - .461.2011
Tutuncuoglu and A. Yener, “Optimum K. ] 32[transmission policies for battery limited energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 11, no. 3,pp. 1180–1189, 2012.
[33] C. E. Shannon, “A mathematical theory of communication,”ACM SIGMOBILE mobile computing and communications review,vol. 5, no. 1, pp. 3–55, 2001.
[34] M. J. Neely, “Stochastic network optimization with application to communication and queueing systems,” Synthesis Lectures on Communication Networks, vol. 3, no. 1, pp. 1–211,2010.
[35] A. Arapostathis, V. S. Borkar, E. Fernández-Gaucherand,M. K. Ghosh, and S. I. Marcus, “Discrete-time controlled markov processes with average cost criterion: a survey,” SIAM Journal on Control and Optimization, vol. 31, no. 2,pp. 282–344, 1993.
[36] M. L. Puterman, “Markov decision processes”: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
[37] Yu, H., & Neely, M. J.”Learning-aided optimization for energy-harvesting devices with outdated state information”.IEEE/ACM Transactions on Networking, 27(4), 1501–1514.2019.
نشریه تحلیل مدارها، داده ها و سامانه ها - سال
اول- شماره اول - بهار 1402
15
[38] Shaviv, D., & Özgür, A . “Online power control for block IID energy harvesting channels”. IEEE Transactions on Information Theory, 64(8), 5920–5937. 2018.
[39] Zinkevich, M. “Online convex programming and generalized infinitesimal gradient ascent”. In Proceedings of the 20th international conference on machine learning (icml-03) (pp. 928–936