مدرن سازی سیستم های آبیاری و حفاظت از آب با تاکید بر اثربازگشتی در سطح مزرعه در حوضه آبریز بختگان
محورهای موضوعی : فصلنامه علمی -پژوهشی تحقیقات اقتصاد کشاورزیمحمدحسین زیبایی 1 * , علی محمد آخوندعلی 2 , فریدون رادمنش 3 , حیدر زارعی 4
1 - دانشجوی دکتری گروه هیدرولوژی و منابع آب دانشکده مهندسی علوم آب دانشگاه شهید چمران.
2 - استاد گروه هیدرولوژی و منابع آب دانشکده مهندسی علوم آب دانشگاه شهید چمران.
3 - دانشیار گروه هیدرولوژی و منابع آب دانشکده مهندسی علوم آب دانشگاه شهید چمران.
4 - دانشیار گروه هیدرولوژی و منابع آب دانشکده مهندسی علوم آب دانشگاه شهید چمران.
کلید واژه: ایران, مدرنیزه کردن آبیاری, اثر بازگشتی آب, بهرهوری آب, حفاظت از آب,
چکیده مقاله :
ایران با کمبود شدید آب روبرو است. معمولاً مدرنسازی سیستمهای آبیاری و بهبود راندمان آبیاری به منزلهی فرصتی برای صرفه جویی قابل توجه آب در بخش کشاورزی در نظر گرفته میشود. به همین دلیل، دولت ایران قویاً از مدرنیزه کردن سیستمهای آبیاری پشتیبانی میکند و اقدامات آب- اندوز زیادی با هدف بهبود بهرهوری آب و کاهش مصرف آب انجام داده است. در این راستا، پیشرفتهایی نیز صورت گرفته است. اما کل آب مصرفی کشاورزی آن گونه که انتظار میرفته، کاهش نیافته است. بنابراین، مصرف آب کشاورزی در ایران ممکن است که پدیده اثر بازگشتی را تجربه کرده باشد. فرضیه اثر بازگشتی به عنوان پیامدی از سرمایهگذاری آب - اندوز از معمای جونز در اقتصاد انرژی گرفته شده است. هدف از این مطالعه، ارزیابی مقدار اثر بازگشتی آب (WRE) در سطح مزرعه در حوضه آبریز بختگان با استفاده از مدل تخصیص زمین اصلاح شده و رویکرد مقایسه مستقیم بود. نتایج نشان داد که مقدار WRE در حوضه آبریز بختگان میتواند بین 1/10% تا 3/109% نوسان داشته باشد.
Iran is facing severe water shortage.Modernization of irrigation systems and improving the efficiency of water use is typically presented as an opportunity for large water saving in the agricultural sector. For this reason, the Iranian government strongly supports the modernization of irrigation systems and has implemented many water-saving irrigation measures with the objective of improving water productivity and reducing agricultural water use. In this regard, some progress has been made. But total agricultural water use did not decline as expected. Thus, agricultural water use in Iran may experience a rebound effect. The hypothesis of a rebound effect as a consequence of water saving investments is taken from the Jevons paradox in energy economics. The objective of this study was to evaluate the magnitude of the water rebound effect (WRE) at farm level in Bakhtegan basin using corrected land allocation model and direct comparison approach. The results indicated that the magnitude of the agricultural WRE in Bakhtegan basin can fluctuate between 10.1% and 109.38%.
- زیبایی، م. و آخوند علی، ع. م. (1395). اثر بازگشتی به حالت اولیه یا معمای جیونز: مفهومی برای درک مناسبتر پیامدهای بهبود کارایی آب. نشریه علوم آب و خاک، سال بیستم، شماره 78.
- عباسی، ف. و همکاران.( 1394). ارتقای بهرهوری مصرف آب، وزارت جهاد کشاورزی، سازمان پژوهشات، آموزش و ترویج کشاورزی، مؤسسه پژوهشات فنی و مهندسی کشاورزی،.
- مظاهری، م. و عبدالمنافی، ن. (1396). بررسی بحران آب و پیامدهای آن در کشور، مرکز پژوهشهای مجلس شورای اسلامی، معاونت پژوهشهای زیربنایی و امور تولیدی، شماره مسلسل: 15608،.
- وزارت نیرو، شرکت مدیریت منابع آب ایران، گزارش آخرین آمار و ارقام مربوط به سدها و درصد پربودن حجم مخازن، (1395).
Refrences
- Alcott, B., (2005). Jevons' paradox. Ecol. Econ. 54, 9–21.
- Berbel, J., & Mateos, L., (2014). Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agric. Syst.128, 25–34.
- Berbel, J., Gutiérrez-Martín, C., Rodríguez-Díaz, J.A., Camacho, E., & Montesinos, P., (2015). Literature review on rebound effect of water saving measures and analysis of a Spanish case study. Water Resour. Manag. 29, 663–678.
- Berkhout, P.H., Muskens, J.C., & Velthuijsen, J.W., (2000). Defining the rebound effect. Energ Policy 28, 425–432.
- Binswanger, M., (2001). Technological progress and sustainable development: what about the rebound effect? Ecol. Econ. 36, 119–132.
- Brinegar, H.R., & Ward, F.A., (2009). Basin impacts of irrigation water conservation policy.Ecol. Econ. 69, 414–426.
- Brookes, L., (1990). The greenhouse effect: the fallacies in the energy efficiency solution. Energ Policy 18, 199–201.
- Brookes, L., (2000). Energy efficiency fallacies revisited. Energ Policy 28, 355–366.
- Chai, Q., Gan, Y., Turner, N.C., Zhang, R.Z., Chao, & Siddique, K.H.M., (2014). Water-saving innovations in Chinese agriculture. Adv. Agron. 126, 149–202.
- Contor, B.A., & Taylor, R.G., (2013). Why improving irrigation efficiency increases total volume of consumptive use. Irrig. Drain. 62, 273–280.
- Dagnino, M., & Ward, F.A., (2012). Economics of agricultural water conservation: empirical analysis and policy implications. Int. J. Water Resour. Dev. 28, 577–600.
- Dinar, A., & Zilberman, D., (1991). The economics of resource-conservation, pollution-reduction technology selection: the case of irrigation water. Resour. Energy 13,323–348.
- Dumont, A., Mayor, B., & López-Gunn, E., (2013). Is the rebound effect or Jevons paradox a useful concept for better management of water resources? Insights from the irrigation modernisation process in Spain. Aquat. Procedia 1, 64–76.
- Ellis, J.R., Lacewell, R.D., & Reneau, D.R., (1985). Estimated economic impact from adoption of water-related agricultural technology. West. J. Agric. Econ. 307–321.
- European, C., (2012). A Blueprint to Safeguard Europe's Water Resources. Author, pp. 11.
- Fernandez Garcia, I., Rodriguez Diaz, J.A., Camacho Poyato, E., Montesinos, P., & Berbel, J., (2014). Effects of modernization and medium term perspectives on water and energy use in irrigation districts. Agric. Syst. 131, 56–63.
- Freire-Gonz, A., & Lez, J., (2011). Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households. Ecol. Model. 223, 32–40.
- García-Garizábal, I., & Causapé, J., (2010). Influence of irrigation water management on the quantity and quality of irrigation return flows. J. Hydrol. 385, 36–43.
- Graveline, N. Majone, B. Van Duinen, R. & Ansink, E. (2013) Hydro-economic modeling of water scarcity under global change: an application to the Gállego river basin (Spain). Reg Environ Chang 14:119-132. doi:10.1007/s10113-013-0472-0
- Gomez, C.M., Perez-Blanco, C.D., (2014). Simple myths and basic maths about greening irrigation. Water Resour. Manag. 28, 4035–4044.
- Gómez, C.M. & Gutierrez, C. (2011). Enhancing irrigation efficiency but increasing water use: the Jevons' Paradox. EAAE 2011, Congress Change and Uncertainty Challenges for Agriculture, Food and Natural Resources. Zurich, Switzerland.
- Greening, L.A., Greene, D.L., & Difiglio, C., (2000). Energy efficiency and consumption—the rebound effect—a survey. Energ Policy 28, 389–401.
- Graveline, N. Majone, B. Van Duinen, R. & Ansink, E. (2013). Hydro-economic modeling of water scarcity under global change: an application to the Gállego river basin (Spain). Reg Environ Chang 14:119-132. doi:10.1007/s10113-013-0472-0
- Gutierrez-Martin, C., & Gomez Gomez, C.M., (2011). Assessing irrigation efficiency improvements by using a preference revelation model. Span. J. Agric. Res. 9,1009–1020.
- Heumesser, C. Fuss, S. Szolgayová, J. Strauss, F. & Schmid, E. (2012) Investment in irrigation systems under precipitation uncertainty. Water Resour Manag 26(11): 3113-3137
- Hoekstra, A.Y., (2013). The Water Footprint of Modern Consumer Society. Routledge, New York.
- Huffaker, R., (2008). Conservation Potential of Agricultural Water Conservation Subsidies.
- Huffaker, R., & Whittlesey, N., (2000). The Allocative Efficiency and Conservation Potential of Water Laws Encouraging Investments in On-farm Irrigation Technology. 24. AGR Econ-Blackwell, pp. 47–60.
- Khazzoom, J.D., (1980). The incorporation of new technologies in energy supply estimation. In: Ziemba, W.T., Schwartz, S.L., Koenigsberg, E. (Eds.), Energy Policy
- Modeling: United States and Canadian Experiences. Springer. http://dx.doi.org/10.1007/978-94-009-8748-7_14.
- Lecina, S., Isidoro, D., Playan, E., & Aragues, R., (2010). Irrigation modernization and water conservation in Spain: the case of Riegos del Alto Aragon. Agric. Water Manag. 97, 1663–1675.
- Li, H., & Zhao, J., (2016). Rebound Effect of Irrigation Technologies? The Role of Water Rights. Author. 2016 Annual Meeting, July 31–August 2, 2016, Boston, Massachusetts Agricultural and Applied Economics Association.
- Loch, A., & Adamson, D., (2015). Drought and the rebound effect: a Murray–Darling Basin example. Nat. Hazards 79, 1429–1449.
- Lopez-Gunn, E., Zorrilla, P., Prieto, F., & Llamas, M.R., (2012). Lost in translation? Water efficiency in Spanish agriculture. Agric. Water Manag. 108, 83–95.
- Ouyang, J., Long, E., & Hokao, K., (2010). Rebound effect in Chinese household energy efficiency and solution for mitigating it. Energy 35, 5269–5276.
- Perry, C., (2007). Efficient irrigation; inefficient communication; flawed recommendations. Irrig. Drain. 56, 367–378.
- Peterson, J.M., & Ding, Y., (2005). Economic adjustments to groundwater depletion in the high plains: do water-saving irrigation systems save water? Am. J. Agric. Econ. 87, 147–159.
- Pfeiffer, L., & Lin, C.Y.C., (2014). Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. J. Environ. Econ. Manag. 67, 189–208.
- Playán, E., & Mateos, L., (2006). Modernization and optimization of irrigation systems to increase water productivity. Agric. Water Manag. 80, 100–116.
- Qureshi, M.E., Schwabe, K., Connor, J., & Kirby, M., (2010). Environmental water incentive policy and return flows. Water Resour. Res. 46.
- Rodríguez-Díaz, J.A., Pérez-Urrestarazu, L., Camacho-Poyato, E., & Montesinos, P., (2011). The paradox of irrigation scheme modernization: more efficient water use linked to higher energy demand. Span. J. Agric. Res. 9, 1000–1008.
- Saunders, H.D., (2000). A view from the macro side: rebound, backfire, and Khazzoom–Brookes. Energ Policy 28, 439–449.
- Scheierling, S.M., Young, R.A., & Cardon, G.E., (2006). Public subsidies for water-conserving irrigation investments: hydrologic, agronomic, and economic assessment. Water Resour. Res. 42.
- Small, K.A., & Van Dender, K., (2007). Fuel efficiency and motor vehicle travel: the declining rebound effect. Energy J. 25–51.
- Sorrell, S., & Dimitropoulos, J., (2008). The rebound effect: microeconomic definitions, limitations and extensions. Ecol. Econ. 65, 636–649.
- Törnqvist, R., & Jarsjö, J., (2012). Water savings through improved irrigation techniques: basin-scale quantification in semi-arid environments. Water Resour. Manag. 26, 949–962.
- Wang, Z., & Lu, M., (2014). An empirical study of direct rebound effect for road freight transport in China. Appl. Energy 133, 274–281.
- Wang, H., Zhou, D.Q., Zhou, P., & Zha, D.L., (2012). Direct rebound effect for passenger transport: empirical evidence from Hong Kong. Appl. Energy 92, 162–167.
- Ward, F.A., & Pulido-Velazquez, M., (2008). Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. U. S. A. 105, 18215–18220.
- Whittlesey, N., (2003). Improving irrigation efficiency through technology adoption: when will it conserve water? Dev. Water Sci. 50, 53–62.
_||_