Design and Analysis of a Two stage Class AB Operational Trans-conductance Amplifier in 180 –nm Technology
Subject Areas :
Electrical Engineering
shahrbanoo ghorbanzadeh
1
,
hadi dehbovid
2
,
Alireza ghorbani
3
,
Seyed Mehdi Abedi Pahnekolaei
4
1 - Department of Electrical Engineering, , Sari Branch, Islamic Azad University ,
Sari , Iran
2 - Department of Electrical Engineering ,Nour Branch, Islamic Azad University,Nour,Iran
3 - Department of Electrical Engineering, Sari Branch, Islamic
Azad University, Sari, Iran
4 - Department of Electrical Engineering, Sari Branch, Islamic Azad university, Sari, Iran
Received: 2022-09-09
Accepted : 2022-11-08
Published : 2022-12-01
Keywords:
operational trans-conductance amplifier,
OTA specifications,
post layout simulation,
Figures of Merits,
Abstract :
This paper presents design concept of Operational Transconductance Amplifier (OTA). Using active loads in the first stage and improved recycling structure, the effective trans-conductance of the first stage is increased. Nonlinear current mirror boosts the current of the second stage; Therefore, Slew Rate (SR) is increased. The class-AB technique is achieved without enhancing power dissipation and without unity-gain bandwidth (UGBW) or noise deterioration. The efficiency of the proposed OTA is evaluated by several simulations in a 0.18μm CMOS process with the 1.8 V supply voltage. This technique is very helpful for high amplification, stability, and low power applications. From the simulation results, the two stage amplifier gives better performance compared to other topologies, especially in terms of gain, output swing, slew rate and unity-gain bandwidth. The circuit is able to achieve 95 dB gain, a 3V output swing, a 169 slew rate and a unity-gain bandwidth of 344 MHZ with a power supply voltage of 1.8 V.
References:
Ghosh, S., Bhadauria, V. (2021). High current efficiency single-stage bulk-driven subthreshold-biased class-AB OTAs with enhanced transconductance and slew rate for large capacitive loads, Analog Integrated Circuits and Signal Processing, 109, 403–433
Kumar, T. B., Kar, S. K., Boolchandani, D. (2020). A wide linear range CMOS OTA and its application in continuous-time filters , Analog Integrated Circuits and Signal Processing. 103, 283–290.
Wen, B., Zhang, Q., Zhao, X. (2019). A two-stage CMOS OTA with enhanced transconductance and DC-gain ,Analog Integrated Circuits and Signal Processing. 98, 257–264
P. Garde, A.J. Lopez-Martin, R.G. Carvajal, J.A. Galan, J. Ramirez-Angulo, Super class AB RFC OTA using non-linear current mirrors, Electronics Letters. 54 (2018) 1317-1318.
Kulej , T., Khateb, F. (2020). A Compact 0.3-V Class AB Bulk-Driven OTA, IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 28, 224 - 232.
Pourashraf, S., Ramirez-Angulo, J., Roman-Loera, A., Gangineni, M. (2019). Gain and Bandwidth Enhanced Class-AB OTAs, IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). 778- 781.
Ferreira, L. H. C. ,Pimenta, T. C., Moreno, R. L. (2007) An ultra-low-voltage ultra-low-power CMOS Miller OTA with rail-to-rail input/output swing, IEEE Trans. Circuits Syst. II. 54, 843–847.
Raikos, G., Vlassis, S. (2011). Low-voltage bulk-driven input stage with improved transconductance, Circuit Theor.39, 39: 327–39.
Ferreira, L. H. C., Sonkusale, S. R. A. (2014). 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process, IEEE Trans. Circuits Syst. I, 61, 1609-1617.
Thandri, B.K., et.al. (2003). A robust feedforward compensation scheme for multistage operational trans-conductance amplifiers with no Miller Capacitors, IEEE J. of Solid-State Circuits. 38, 237-243.
Callewaert L. andSansen, W. (1990). Class AB CMOS amplifiers with high efficiency, IEEE J. Solid-State Circuits. 25, 684–691.
Galan, JA.,López-Martín, AJ., Carvajal, RG., Ramírez-Angulo, J., Rubia-Marcos, C. (2007). Super class-AB OTAs with adaptive biasing and dynamic output current scaling, IEEE Transactions onCircuits and Systems I: Regular Papers. 54, 449-457.
Lopez-Martin, A.J., Baswa, S., Ramirez-Angulo, J., Carvajal, R.G. (2005). Low-voltage Super Class AB CMOS OTA cells with very high slew rate and power efficiency, IEEE J. Solid-State Circuits. 40, 1068–1077.
Garde, M.P., Lopez-Martin, A., Carvajal, R.G., et al. (2018). Super class AB recycling folded cascode OTA, IEEE J. Solid-State Circuits. 53, 2614–2623.
Garde, M.P., Lopez-Martin, A., Carvajal, R.G., et al. (2018). Super class AB RFC OTA with adaptive local common-mode feedback, Electron. Lett.
Perez, A., Nithin, K., Bonizzoni, E., and Maloberti, F. (2009). Slew-rate and gain enhancement in two stage operational amplifiers, IEEE Circuits Syst. 2485–2488.
Sutula,, Dei , M., Terés, L., Serra-Graells, F. (2016). Variable-Mirror Amplifier: A New Family of Process-Independent Class-AB Single-Stage OTAs for Low-Power SC Circuits, IEEE Transactions on Circuits and Systems I: Regular Papers. 63, 1101-1110.
Lopez-Martin, A., Algueta, J. M., Garde, M. P., Carvajal, R. G., & Ramirez-Angulo, J. (2020). 1-V 15-μW 130-nm CMOS Super Class AB OTA. IEEE International Symposium on Circuits and Systems (ISCAS), 1–4.
Roh, J. (2006). High-gain class-AB OTA with low quiescent current, Journal Analog Integr. Circuits Signal Process. 47, 225–228.
Assaad, R., and Silva-Martinez, J. (2009). The recycling folded cascode: A general enhancement of the folded cascode amplifier, IEEE Journal. Solid-State Circuits. 44, 2535–2542.
Yavari, M., and Moosazadeh, T. (2014). A single-stage operational amplifier with enhanced transconductance and slew rate for switched-capacitor circuits, Journal. Analog Integr. Circuits Signal Process. 79, 589–598.
Yavari, M. (2005). Hybrid cascode compensation for two-stage CMOS op-amps, IEICE trans. Electronics. 88, 1161-1165.
Anisheh, S. M., Shamsi, H. (2016). Two-stage class-AB OTA with enhanced DC gain and slew rate, International Journal of Electronics Letters. 5, 438-448.
Guo, J., Ho, M., Kwong, KY., Leung, KN. (2015). Power-area-efficient transient-improved capacitor-free FVF-LDO with digital detecting technique. Electronics Letters . 51, 94–96.
Pelgrom, M. J. M., Duinmaijer, A. C. J., Welbers, A. P. G. (1989). Matching Properties of MOS Transistors, IEEE Journal Solid-State Circuits. 24, 1433-1439.
Grasso, A. D., Palumbo, G., Pennisi, S. 2006. Three-stage CMOS OTA for large capacitive loads with efficient frequency compensation scheme, IEEE Trans. Circuits Syst. II, Exp. Briefs. 53, 1044-48.
Grasso, A. D., Palumbo, G., Pennisi, S. 2007. Advances in reversed Nested Miller compensation. IEEE Trans. Circuits Syst. I, Reg. Papers. 45, 1459-1470.