سامانه نانومرکب ساختار اسفنجی رسانا با قابلیت جذب و پوششدهی امواج الکترومغناطیس بر پایه لاستیک EPDM و MWCNT: تأثیر ریخت اسفنج و مقدار رسانش الکتریکی
محورهای موضوعی : شیمی تجزیههستی بیژنی 1 , علی اصغر کتباب 2 *
1 - دانشجوی دکترای مهندسی پلیمر، دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران
2 - استاد مهندسی پلیمر، دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران
کلید واژه: پوشش امواج الکترومغناطیس, اتیلن-پروپیلن-دیان-مونومر, نانولولههای کربنی چنددیواره, اسفنجها, جاذب امواج الکترومغناطیس,
چکیده مقاله :
در پژوهش حاضر، نانوچندسازههای رسانای جاذب امواج الکترومغناطیس برپایه لاستیک اتیلن-پروپیلن-دیان-مونومر (EPDM) و نانولولههای کربنی چند دیواره (MWCNT) با عامل پفزای شیمیایی و روش قالبگیری فشاری تهیه شدند. نتیجه های به دست آمده نشان داد که نانوچندسازههای اسفنجی آستانه نفوذ الکتریکی پایینتر و جذب امواج الکترومغناطیس بالاتری نسبت به ترکیبهای جامد همانند خود داشتند. نانوچندسازههای اسفنجی، پوششدهی امواج 28 تا 45 دسیبل را در گستره بسامد نوار ایکس (4/12-2/8 گیگاهرتز) از خود نشان میدهند. همچنین، بازده پوششدهی الکترومغناطیس نمونه اسفنجی تحت خمشهای مکرر، نسبت به نمونه غیرمتخلخل، بهدلیل رفتار بازیابی بالا، کاهش ناچیزی از خود نشان داد. نتیجه ها حاکی از قابلیت بالای اسفنجهای شبکه ای شده EPDM/MWCNT بهعنوان جاذب امواج الکترومغناطیس با وزن کم و انعطافپذیری و تغییر فرم بالا است.
In the present study, electromagnetic wave absorber nanocomposite foams based on Ethylene-propylene-diene-monomer (EPDM) and multi-walled carbon nanotubes (MWCNT) were fabricated using a chemical blowing agent and compression molding. Foam nanocomposites showed lower electrical percolation threshold and higher electromagnetic wave absorption compared to their solid counterparts. Above the percolation threshold, the foam nanocomposites show a shielding effectiveness of 28-45 dB in the X-band frequency range (8.2- 12.4 GHz). It was shown that the dominant shielding mechanism is absorption for the prepared foams. Also, the electromagnetic shielding effectiveness of the foam was insignificantly affected under repeated bending. Our results indicate the high potential of cross-linked EPDM/MWCNT foams as a lightweight electromagnetic wave absorber with high flexibility and deformability.
[1] Luo, J.; Wang, L.; Huang, X.; Li, B.; Guo, Z.; Song, X.; Lin, L.; Tang, L.C.; Xue, H.; Gao, J.; ACS applied materials & interfaces 11, 10883-10894, 2019.
[2] Geetha, S.; Satheesh Kumar, K.; Rao, C.R.; Vijayan, M.; Trivedi, D.; Journal of Applied Polymer Science 112, 2073-2086, 2009.
[3] Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; and Peng, X.; Carbon 105, 305-313, 2016.
[4] Thomassin, J.M.; Pagnoulle, C.; Bednarz, L.; Huynen, I.; Jerome, R.; Detrembleur, C.; Journal of Materials Chemistry 18, 792-796, 2008.
[5] Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W.; Nano Letters 5, 2131-2134, 2005.
[6] Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W.; Advanced Materials 17, 1999-2003, 2005.
[7] Shen, B.; Li, Y.; Zhai, W.; Zheng, W.; ACS Applied Materials & Interfaces 8, 8050-8057, 2016.
[8] Duan, H.; Zhu, H.; Yang, J.; Gao, J.; Yang, Y.; Xu, L.; Zhao, G.; Liu, Y.; Composites Part A: Applied Science and Manufacturing 118, 41-48, 2019.
[9] Jeddi, J.; Katbab, A.A.; Polymer Composites 39, 3452-3460, 2018.
[10] Jeddi, J.; Katbab, A.A.; Mehranvari, M.; Polymer Composites, 40, 4056-4066, 2019.
[11] Kim, J.M.; Lee, Y.; Jang, M.G.; Han, C.; Kim, W.N.; Journal of Applied Polymer Science 134, 44373, 2017.
[12] Bizhani, H.; Nayyeri, V.; Katbab, A.; Jalali-Arani, A.; Nazockdast, H.; European Polymer Journal 100, 209-218, 2018.
[13] Bernal, M.M.; Martin-Gallego, M.; Molenberg, I.; Huynen, I.; Manchado, M.A.L.; Verdejo, R.; RSC Advances 4, 7911-7918, 2014.
[14] Jiang, Q.; Liao, X.; Li, J.; Chen, J.; Wang, G.; Yi, J.; Yang, Q.; Li, G.; Composites Part A: Applied Science and Manufacturing 123, 310-319, 2019.
[15] Li, Y.; Shen, B.; Yi, D.; Zhang, L.; Zhai, W.; Wei, X.; Zheng, W.; Composites Science and Technology 138, 209-216, 2017.
[16] Zhang, H.; Zhang, G.; Tang, M.; Zhou, L.; Li, J.; Fan, X.; Shi, X.; Qin, J.; Chemical Engineering Journal 353, 381-393, 2018.
[17] Li, J.; Zhang, G.; Ma, Z.; Fan, X.; Fan, X.; Qin, J.; Shi, X.; Composites Science and Technology 129, 70-78, 2016.
[18] Ameli, A.; Jung, P.; Park, C.; Carbon 60, 379-391, 2013.
[19] Ameli, A.; Nofar, M.; Wang, S.; and Park, C.B.; ACS Applied Materials & Interfaces 6, 11091-11100, 2014.
[20] Zhan, Y.; Oliviero, M.; Wang, J.; Sorrentino, A.; Buonocore, G.G.; Sorrentino, L.; Lavorgna, M.; Xia, H.; Iannace, S.; Nanoscale 11, 1011-1020, 2019.
[21] Yang, J.; Liao, X.; Li, J.; He, G.; Zhang, Y.; Tang, W.; Wang, G.; Li, G.; Composites Science and Technology 181, 107670, 2019.
[22] Bizhani, H.; Katbab, A.A.; Verdejo, R.; "Elastomeric nanocomposite foams with improved properties for extreme conditions In High-Performance Elastomeric Materials Reinforced by Nano-Carbons"; Elsevier BV, Amsterdam, 2020.
[23] Verdejo, R.; Stämpfli, R.; Alvarez-Lainez, M.; Mourad, S.; Rodriguez-Perez, M.A.; Brühwiler, P.A.; Shaffer, M.; Composites Science and Technology 69, 1564-1569, 2009.
[24] Verdejo, R.; Barroso-Bujans, F.; Rodriguez-Perez, M.A.; Antonio de Saja, J.; Arroyo, M.; Lopez-Manchado, M.A.; Journal of Materials Chemistry 18, 3933-3939, 2008.
[25] Yu, D. R.; Kim, G.H.; Polymer-Plastics Technology and Engineering 52, 699-703, 2013.
[26] Yan, N.; Wu, J.; Zhan, Y.; Xia, H.; Plastics, rubber and composites 38, 290-296, 2009.
[27] Cheng, Q.; Wang, J.; Jiang, K.; Li, Q.; Fan, S.; Journal of Materials Research 23, 2975-2983, 2008.
[28] Sadeghi, S.; Arjmand, M.; Otero Navas, I.; Zehtab Yazdi, A.; Sundararaj, U.; Macromolecules 50, 3954-3967, 2017.
[29] Li, T.; Zhao, G.; Wang, G.; Polymer Composites 40, E1786-E1800, 2019.
[30] Jana, S.; Garain, S.; Sen, S.; Mandal, D.; Physical Chemistry Chemical Physics 17, 17429-17436, 2015.
[31] Zhang, H.; Zhang, G.; Gao, Q.; Tang, M.; Ma; Z.; Qin; J.; Wang, M.; and Kim, J.K.; Chemical Engineering Journal 379, 122304, 2020.
[32] Liu, H.; Liang, C.; Chen, J.; Huang, Y.; Cheng, F.; Wen, F.; Xu, B.; Wang, B.; Composites Science and Technology 169, 103-109, 2019.
[33] Hamidinejad, M.; Zhao, B.; Zandieh, A.; Moghimian, N.; Filleter, T.; and Park, C.B.; ACS Applied Materials & Interfaces 10, 30752-30761, 2018.
[34] Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U.; Carbon 60, 146-156, 2013.
[35] Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.K.; Advanced Materials 26, 5480-5487, 2014.
[36] Peddini, S.; Bosnyak, C.; Henderson, N.; Ellison, C.; Paul, D.; Polymer 56, 443-451, 2015.
[37] Inuwa, I.; Arjmandi, R.; Ibrahim, A.N.; Haafiz, M.M.; Wong, S.; Majeed, K.; Hassan, A.; Fibers and Polymers 17, 1657-1666, 2016.
[38] Shojaei Dindarloo, A.; Karrabi, M.; Hamid, M.; Ghoreishy, R.; Plastics, Rubber and Composites 48, 218-225, 2019.
_||_[1] Luo, J.; Wang, L.; Huang, X.; Li, B.; Guo, Z.; Song, X.; Lin, L.; Tang, L.C.; Xue, H.; Gao, J.; ACS applied materials & interfaces 11, 10883-10894, 2019.
[2] Geetha, S.; Satheesh Kumar, K.; Rao, C.R.; Vijayan, M.; Trivedi, D.; Journal of Applied Polymer Science 112, 2073-2086, 2009.
[3] Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; and Peng, X.; Carbon 105, 305-313, 2016.
[4] Thomassin, J.M.; Pagnoulle, C.; Bednarz, L.; Huynen, I.; Jerome, R.; Detrembleur, C.; Journal of Materials Chemistry 18, 792-796, 2008.
[5] Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W.; Nano Letters 5, 2131-2134, 2005.
[6] Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W.; Advanced Materials 17, 1999-2003, 2005.
[7] Shen, B.; Li, Y.; Zhai, W.; Zheng, W.; ACS Applied Materials & Interfaces 8, 8050-8057, 2016.
[8] Duan, H.; Zhu, H.; Yang, J.; Gao, J.; Yang, Y.; Xu, L.; Zhao, G.; Liu, Y.; Composites Part A: Applied Science and Manufacturing 118, 41-48, 2019.
[9] Jeddi, J.; Katbab, A.A.; Polymer Composites 39, 3452-3460, 2018.
[10] Jeddi, J.; Katbab, A.A.; Mehranvari, M.; Polymer Composites, 40, 4056-4066, 2019.
[11] Kim, J.M.; Lee, Y.; Jang, M.G.; Han, C.; Kim, W.N.; Journal of Applied Polymer Science 134, 44373, 2017.
[12] Bizhani, H.; Nayyeri, V.; Katbab, A.; Jalali-Arani, A.; Nazockdast, H.; European Polymer Journal 100, 209-218, 2018.
[13] Bernal, M.M.; Martin-Gallego, M.; Molenberg, I.; Huynen, I.; Manchado, M.A.L.; Verdejo, R.; RSC Advances 4, 7911-7918, 2014.
[14] Jiang, Q.; Liao, X.; Li, J.; Chen, J.; Wang, G.; Yi, J.; Yang, Q.; Li, G.; Composites Part A: Applied Science and Manufacturing 123, 310-319, 2019.
[15] Li, Y.; Shen, B.; Yi, D.; Zhang, L.; Zhai, W.; Wei, X.; Zheng, W.; Composites Science and Technology 138, 209-216, 2017.
[16] Zhang, H.; Zhang, G.; Tang, M.; Zhou, L.; Li, J.; Fan, X.; Shi, X.; Qin, J.; Chemical Engineering Journal 353, 381-393, 2018.
[17] Li, J.; Zhang, G.; Ma, Z.; Fan, X.; Fan, X.; Qin, J.; Shi, X.; Composites Science and Technology 129, 70-78, 2016.
[18] Ameli, A.; Jung, P.; Park, C.; Carbon 60, 379-391, 2013.
[19] Ameli, A.; Nofar, M.; Wang, S.; and Park, C.B.; ACS Applied Materials & Interfaces 6, 11091-11100, 2014.
[20] Zhan, Y.; Oliviero, M.; Wang, J.; Sorrentino, A.; Buonocore, G.G.; Sorrentino, L.; Lavorgna, M.; Xia, H.; Iannace, S.; Nanoscale 11, 1011-1020, 2019.
[21] Yang, J.; Liao, X.; Li, J.; He, G.; Zhang, Y.; Tang, W.; Wang, G.; Li, G.; Composites Science and Technology 181, 107670, 2019.
[22] Bizhani, H.; Katbab, A.A.; Verdejo, R.; "Elastomeric nanocomposite foams with improved properties for extreme conditions In High-Performance Elastomeric Materials Reinforced by Nano-Carbons"; Elsevier BV, Amsterdam, 2020.
[23] Verdejo, R.; Stämpfli, R.; Alvarez-Lainez, M.; Mourad, S.; Rodriguez-Perez, M.A.; Brühwiler, P.A.; Shaffer, M.; Composites Science and Technology 69, 1564-1569, 2009.
[24] Verdejo, R.; Barroso-Bujans, F.; Rodriguez-Perez, M.A.; Antonio de Saja, J.; Arroyo, M.; Lopez-Manchado, M.A.; Journal of Materials Chemistry 18, 3933-3939, 2008.
[25] Yu, D. R.; Kim, G.H.; Polymer-Plastics Technology and Engineering 52, 699-703, 2013.
[26] Yan, N.; Wu, J.; Zhan, Y.; Xia, H.; Plastics, rubber and composites 38, 290-296, 2009.
[27] Cheng, Q.; Wang, J.; Jiang, K.; Li, Q.; Fan, S.; Journal of Materials Research 23, 2975-2983, 2008.
[28] Sadeghi, S.; Arjmand, M.; Otero Navas, I.; Zehtab Yazdi, A.; Sundararaj, U.; Macromolecules 50, 3954-3967, 2017.
[29] Li, T.; Zhao, G.; Wang, G.; Polymer Composites 40, E1786-E1800, 2019.
[30] Jana, S.; Garain, S.; Sen, S.; Mandal, D.; Physical Chemistry Chemical Physics 17, 17429-17436, 2015.
[31] Zhang, H.; Zhang, G.; Gao, Q.; Tang, M.; Ma; Z.; Qin; J.; Wang, M.; and Kim, J.K.; Chemical Engineering Journal 379, 122304, 2020.
[32] Liu, H.; Liang, C.; Chen, J.; Huang, Y.; Cheng, F.; Wen, F.; Xu, B.; Wang, B.; Composites Science and Technology 169, 103-109, 2019.
[33] Hamidinejad, M.; Zhao, B.; Zandieh, A.; Moghimian, N.; Filleter, T.; and Park, C.B.; ACS Applied Materials & Interfaces 10, 30752-30761, 2018.
[34] Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U.; Carbon 60, 146-156, 2013.
[35] Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.K.; Advanced Materials 26, 5480-5487, 2014.
[36] Peddini, S.; Bosnyak, C.; Henderson, N.; Ellison, C.; Paul, D.; Polymer 56, 443-451, 2015.
[37] Inuwa, I.; Arjmandi, R.; Ibrahim, A.N.; Haafiz, M.M.; Wong, S.; Majeed, K.; Hassan, A.; Fibers and Polymers 17, 1657-1666, 2016.
[38] Shojaei Dindarloo, A.; Karrabi, M.; Hamid, M.; Ghoreishy, R.; Plastics, Rubber and Composites 48, 218-225, 2019.