بررسی حذف داروی دیکلوفناک سدیم از محیط آبی به کمک زئولیت طبیعی کلینوپتیلولیت اصلاحشده با ماده سطحفعال کاتیونی هگزادسیلتریمتیلآمونیم برمید
محورهای موضوعی : شیمی تجزیهرضا نودهی 1 , احمد رهبر کلیشمی 2
1 - کارشناس ارشد مهندسی شیمی، فرایندهای جداسازی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران
2 - دانشیار مهندسی شیمی، فرآیندهای جداسازی، دانشکده مهندسی شیمی نفت و گاز، دانشگاه علم و صنعت ایران
کلید واژه: زئولیت, جذب سطحی, اصلاح سطحی, حذف دیکلوفناک سدیم,
چکیده مقاله :
زئولیت ها، آلومینوسیلیکات های بلوری و آبدار فلزهای قلیایی و قلیایی خاکی هستند که به دلیل ساختار شیمیایی و سطح ویژه مناسب، برای حذف و جداسازی انواع متفاوتی از آلایند های دارویی بهکارگرفته میشوند. ابتدا، زئولیت طبیعیکلینوپتیلولیت با آسیاب توپی پودر و با ماده سطحفعال کاتیونی هگزادسیل تری متیل آمونیم برمید، سطح آن اصلاح شد. نمونه اصلاحشده برای حذف داروی آنیونی دیکلوفناک سدیم از محیط آبی با روش های فلورسانس پرتو ایکس،طیف سنجی فروسرخ تبدیل فوریه، میکروسکوپی الکترونی روبشی،پراش پرتو ایکس و آزمون BET شناسایی شد. برپایه آزمون BET مقدار سطح ویژه، متوسط قطر حفره ها و حجم کل حفره ها نمونه به ترتیب m2/g 12، nm 55/31 و cm3/g094/0 به دست آمد. شرایط محیط آبی با انحلال مقادیر مشخص از داروی دیکلوفناک سدیم در آب مقطر بهدست آمد. با افزودن اسید و باز یک مولار، pH محیط تغییر میکند. نتایج نشان داد که بررسی عامل های محیطی مانند مقدار جاذب مصرفی، زمان تماس، pH، دما و غلظت اولیه محلول در بازدهی حذف دارو موثر هستند. همچنین، داده های آزمایشگاهی فرایند جذب دیکلوفناک با مدل هم دمای لانگمویر و سینتیک شبه مرتبه دوم تطابق بیشتری داشت. برپایه هم دمای لانگمویر، با مقدار جاذب 2 گرم در لیتر، pH برابر با 9، زمان تماس برابر با 180 دقیقه و غلظت اولیه ppm 200، حداکثر ظرفیت جذب در دمای °C ۲۵ به mg/g 364/34 رسید. در نهایت، نتایج بررسیهای سامانههای ناپیوسته نشان داد که زئولیت طبیعی اصلاحشده بهعنوان جاذبهای ارزان قیمت قادر به حذف داروی دیکلوفناک از محیط آبی است.
Zeolites are crystalline and hydrated aluminosilicates from earth alkali and alkaline metals, which are used to the removal and separation of pharmaceutical pollutants due to their chemical structure and proper surface area. In the present study, first, natural zeolite was powdered by ball mill, and after that, it was modified by a cationic surfactant of the Hexadecyltrimethylammonium bromide. The modified zeolite was investigated by XRF, FTIR, SEM, BET, and XRD techniques. According to BET results, surface area, average pore diameter, and pore volume of the sample were 12 m2/g, 31.55 nm, and 0.094 cm3/g, respectively. Additionally, the efficiency of the sample was studied for removal of diclofenac from the aqueous medium. The results showed that environmental factors, such as adsorbent dose, contact time, pH, temperature, and diclofenac concentration were effective in removal percentage. In addition, the kinetic data were described better with pseudo-second-order kinetic model, also, the equilibrium data for adsorption of diclofenac were fitted well by Langmuir isotherm and the maximum adsorption capacity was 34.364 mg/g at 298 K approximately.
[1]Cherik, D.; Benali, M.; Louhab, K.; World Scientific News10, 116-144.2015.
[2]Giri, A.S.; Golder, A.K.; Groundwater for Sustainable Development 7, 343-347.2018.
[3]Elmolla, E.S.; Chaudhuri, M.; Desalination256)1-3(, 43-47, 2010.
[4] Yilmaz, B.; Ciltas, U.; Journal of Pharmaceutical Analysis 5(3), 153-160.2015.
[5] Perisic, D.J.; Gila, V.; Stankov, M.N.; Katancic, Z.; Kusic, H.; Stangar, U.L.; Dionysiou, D.D.; Bozic, A.L.; Journal of Photochemistry and Photobiology A: Chemistry 321, 238-247, 2016.
[6] Vieno, N.; Sillanpää, M.; Environment international 69, 28-39, 2014.
[7] Lee, S.H.; Kim, K.H.; Lee, M.; Lee, B.D.; Journal of Water Process Engineering 31, 100828, 2019.
[8] Lonappan, L.; Rouissi, T.; Liu, Y.; Brar, S.K.; Surampalli, R.; Journal of Environmental Chemical Engineering 7(1), 102894.2019
[9] Li, S.; Cui, J.; Wu, X.; Zhang, X.; Hu, Q.; Hou, X.; Journal of Hazardous Materials 373, 408-416, 2019.
[10] Daniele, G.; Fieu, M.; Joachim, S.; James-Casas, A.; Andres, S.; Baudoin, P.; Bonnard, I.; Geffard, A.; Vulliet, F.; Talanta 155, 1-7.2016.
[11] Cantarella, M.; Carroccio, S.C.; Dattilo, S.; Avolio, R.; Privitera, V.;Chemical Engineering Journal 367, 180-188, 2019.
[12] Dos Santos, J.M.; Pereira, C.R.; Foletto, E.L.; Dotto, G.L.; International Journal of Biological Macromolecules 131, 301-308, 2019.
[13] Viotti, P.V.; Moreira, W.M.; Dos Santos, O.A.A.; Bergamasco, R.; Vieira, A.M.S.; Vieira, M.F.; Journal of Cleaner Production 219, 809-817, 2019.
[14] Landry, K.A.; Boyer, T.H.; Water Research 47(17), 6432-6444, 2013.
[15] Heberer, T.; Toxicology Letters 131(1-2), 5-17, 2002.
[16] Pebdani, A.A.; Shabani, A.M.H.; Dadfarnia, S.; Khodadoust, S.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 147, 26-30, 2015.
[17] Vergil, I.; Journal of Environmental Management 127, 177-187, 2013.
[18] Kerkez-Kuyumcu, Ö.; Bayazit, Ş.S.; Salam, M.A.; Journal of Industrial and Engineering Chemistry 36, 198-205, 2016.
[19] Crini, G.; Bioresource Technology 97(9), 1061-1085, 2006.
[20] Davis, M.E.; Lobo, R.F.; Chemistry of Materials 4(4), 756-768, 1992.
[21] Sepehr, M.N.; Amrane, A.; Karimaian, K.A.; Zarrabi, M.; Ghaffari, H.R.; Journal of the Taiwan Institute of Chemical Engineers 45(2), 635-647, 2014.
[22] Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Journal of Molecular Liquids 221, 1-11, 2016.
[23] Kamath, B.; Shivram, K.; Analytical Letters 26(5), 903-911, 1993.
[24] Kowalczyk, P.; Sprynskyy, M.; Terzyk, A.P.; Lebedynets, M.; Namieśnik, J.; Buszewski, B.; Journal of Colloid and Interface Science 297(1), 77-85, 2006.
[25] Mollahosseini, A.; Toghroli, M.; Journal of Asian Scientific Research 5(3), 120-125, 2015.
[26] Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C.; Microporous and Mesoporous Materials 225, 385-391, 2016.
[27] Kumar, H.; Katal, A.; Rawat, P.; Journal of Molecular Liquids 249, 227-232, 2018.
[28] Sun, K.; Shi, Y.; Wang, X.; Li, Z.; Journal of Hazardous Materials 323, 584-592, 2017.
[29] Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P.; Desalination 265(1-3), 159-168, 2011.
[30] Sepehr, M.N.; Kazemian, H.; Ghahramani, E.; Amrane, A.; Sivasankar, V.; Zarrabi, M. Journal of the Taiwan Institute of Chemical Engineers 45(4), 1821-1834, 2014.
[31] Allen, S.; Mckay, G.; Porter, J.F.; Journal of Colloid and Interface Science280(2), 322-333, 2004.
[32] Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X.; Journal of Zhejiang University-Science A 10(5), 716-724, 2009.
_||_
[1]Cherik, D.; Benali, M.; Louhab, K.; World Scientific News10, 116-144.2015.
[2]Giri, A.S.; Golder, A.K.; Groundwater for Sustainable Development 7, 343-347.2018.
[3]Elmolla, E.S.; Chaudhuri, M.; Desalination256)1-3(, 43-47, 2010.
[4] Yilmaz, B.; Ciltas, U.; Journal of Pharmaceutical Analysis 5(3), 153-160.2015.
[5] Perisic, D.J.; Gila, V.; Stankov, M.N.; Katancic, Z.; Kusic, H.; Stangar, U.L.; Dionysiou, D.D.; Bozic, A.L.; Journal of Photochemistry and Photobiology A: Chemistry 321, 238-247, 2016.
[6] Vieno, N.; Sillanpää, M.; Environment international 69, 28-39, 2014.
[7] Lee, S.H.; Kim, K.H.; Lee, M.; Lee, B.D.; Journal of Water Process Engineering 31, 100828, 2019.
[8] Lonappan, L.; Rouissi, T.; Liu, Y.; Brar, S.K.; Surampalli, R.; Journal of Environmental Chemical Engineering 7(1), 102894.2019
[9] Li, S.; Cui, J.; Wu, X.; Zhang, X.; Hu, Q.; Hou, X.; Journal of Hazardous Materials 373, 408-416, 2019.
[10] Daniele, G.; Fieu, M.; Joachim, S.; James-Casas, A.; Andres, S.; Baudoin, P.; Bonnard, I.; Geffard, A.; Vulliet, F.; Talanta 155, 1-7.2016.
[11] Cantarella, M.; Carroccio, S.C.; Dattilo, S.; Avolio, R.; Privitera, V.;Chemical Engineering Journal 367, 180-188, 2019.
[12] Dos Santos, J.M.; Pereira, C.R.; Foletto, E.L.; Dotto, G.L.; International Journal of Biological Macromolecules 131, 301-308, 2019.
[13] Viotti, P.V.; Moreira, W.M.; Dos Santos, O.A.A.; Bergamasco, R.; Vieira, A.M.S.; Vieira, M.F.; Journal of Cleaner Production 219, 809-817, 2019.
[14] Landry, K.A.; Boyer, T.H.; Water Research 47(17), 6432-6444, 2013.
[15] Heberer, T.; Toxicology Letters 131(1-2), 5-17, 2002.
[16] Pebdani, A.A.; Shabani, A.M.H.; Dadfarnia, S.; Khodadoust, S.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 147, 26-30, 2015.
[17] Vergil, I.; Journal of Environmental Management 127, 177-187, 2013.
[18] Kerkez-Kuyumcu, Ö.; Bayazit, Ş.S.; Salam, M.A.; Journal of Industrial and Engineering Chemistry 36, 198-205, 2016.
[19] Crini, G.; Bioresource Technology 97(9), 1061-1085, 2006.
[20] Davis, M.E.; Lobo, R.F.; Chemistry of Materials 4(4), 756-768, 1992.
[21] Sepehr, M.N.; Amrane, A.; Karimaian, K.A.; Zarrabi, M.; Ghaffari, H.R.; Journal of the Taiwan Institute of Chemical Engineers 45(2), 635-647, 2014.
[22] Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Journal of Molecular Liquids 221, 1-11, 2016.
[23] Kamath, B.; Shivram, K.; Analytical Letters 26(5), 903-911, 1993.
[24] Kowalczyk, P.; Sprynskyy, M.; Terzyk, A.P.; Lebedynets, M.; Namieśnik, J.; Buszewski, B.; Journal of Colloid and Interface Science 297(1), 77-85, 2006.
[25] Mollahosseini, A.; Toghroli, M.; Journal of Asian Scientific Research 5(3), 120-125, 2015.
[26] Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C.; Microporous and Mesoporous Materials 225, 385-391, 2016.
[27] Kumar, H.; Katal, A.; Rawat, P.; Journal of Molecular Liquids 249, 227-232, 2018.
[28] Sun, K.; Shi, Y.; Wang, X.; Li, Z.; Journal of Hazardous Materials 323, 584-592, 2017.
[29] Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P.; Desalination 265(1-3), 159-168, 2011.
[30] Sepehr, M.N.; Kazemian, H.; Ghahramani, E.; Amrane, A.; Sivasankar, V.; Zarrabi, M. Journal of the Taiwan Institute of Chemical Engineers 45(4), 1821-1834, 2014.
[31] Allen, S.; Mckay, G.; Porter, J.F.; Journal of Colloid and Interface Science280(2), 322-333, 2004.
[32] Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X.; Journal of Zhejiang University-Science A 10(5), 716-724, 2009.