میکرواستخراج و پیش تغلیظ نیکل در نمونه های شکلات با نانوجاذب مغناطیسی SrFe12O19@CTAB و اندازه گیری با جذب اتمی برق گرمایی
محورهای موضوعی : شیمی تجزیهوحید مرتضوی نیک 1 , الهه کنوز 2 * , علیرضا فیض بخش 3 , امیرعبداله مهرداد شریف 4
1 - دانشجوی دکتری شیمی تجزیه، گروه شیمی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.
2 - دانشیار شیمی تجزیه، گروه شیمی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.
3 - . استاد شیمی تجزیه، گروه شیمی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایرانان
4 - استادیار شیمی تجزیه، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
کلید واژه: نیکل, شکلات, استخراج فاز جامد پخشی, جذب اتمی برقگرمایی, SrFe12O19@CTAB,
چکیده مقاله :
دانه های کاکائو حاوی چربی های سیرنشده هستند و برای هیدروژن دارکردن این چربی ها از کاتالیزر نیکل استفاده می شود و نیکل می تواند با غلظت بالا در شکلات وجود داشته باشد. در این پژوهش، استخراج فاز جامد پخشی همراه با روش جذب اتمی برق گرمایی به عنوان یک روش جدید برای اندازه گیری نیکل در نمونه شکلات به کارگرفته شد. در ابتدا نانوجاذب های مغناطیسی هگزافریت استرانسیم ساخته شد. سپس سطح آن با ماده سطح فعال ستیل تری متیل آمونیم برمید (CTAB) اصلاح و نانوجاذب مغناطیسیSrFe12O19@CTAB تهیه شد. ویژگی های جاذب ساخته شده با روش های تجزیه وزن سنجی گرمایی-گرماسنجی پویشی تفاضلی (TGA-DSC) ، پراش پرتو ایکس (XRD) ، طیف سنجی فروسرخ تبدیل فوریه (FTIR)، مغناطیس سنجی نمونه ارتعاشی (VSM) و میکروسکوپی الکترونی پویشی گسیل میدانی (FESEM) مطالعه شد. سپس، مقدارهای بهینه عامل های موثر بر استخراج به دست آمد (pH برابر با 8، مقدار جاذب برابر با 50 میلی گرم، محلول (v/v) 2 % متانول در نیتریک اسید به حجم 2 میلی لیتر به عنوان حلال شستشو). همچنین، نیکل در نمونه های حقیقی شکلات در شرایط بهینه پیش تغلیظ و با دستگاه جذب اتمی برق گرمایی اندازه گیری شد. عامل های تجزیه ای نیز شامل گستره خطی بودن 1 تا µg l-1100، حدتشخیص µg kg-1 0/45، درصد بازیافت 97/8 تا 100/2 ، انحراف استاندارد نسبی 0/222 تا 0/68 % و عامل پیش تغلیظ برابر با 50 تعیین شدند. این روش، روشی ساده، سریع، کم هزینه، موثر، بسیار حساس و دوستدار محیط زیست برای اندازه گیری نیکل درنمونه های شکلات است دانه های کاکائو حاوی چربی های سیرنشده هستند و برای هیدروژن دارکردن این چربی ها از کاتالیزر نیکل استفاده می شود و نیکل می تواند با غلظت بالا در شکلات وجود داشته باشد. در این پژوهش، استخراج فاز جامد پخشی همراه با روش جذب اتمی برق گرمایی به عنوان یک روش جدید برای اندازه گیری نیکل در نمونه شکلات به کارگرفته شد. در ابتدا نانوجاذب های مغناطیسی هگزافریت استرانسیم ساخته شد. سپس سطح آن با ماده سطح فعال ستیل تری متیل آمونیم برمید (CTAB) اصلاح و نانوجاذب مغناطیسیSrFe12O19@CTAB تهیه شد. ویژگی های جاذب ساخته شده با روش های تجزیه وزن سنجی گرمایی-گرماسنجی پویشی تفاضلی (TGA-DSC) ، پراش پرتو ایکس (XRD) ، طیف سنجی فروسرخ تبدیل فوریه (FTIR)، مغناطیس سنجی نمونه ارتعاشی (VSM) و میکروسکوپی الکترونی پویشی گسیل میدانی (FESEM) مطالعه شد. سپس، مقدارهای بهینه عامل های موثر بر استخراج به دست آمد (pH برابر با 8، مقدار جاذب برابر با 50 میلی گرم، محلول (v/v) 2 % متانول در نیتریک اسید به حجم 2 میلی لیتر به عنوان حلال شستشو). همچنین، نیکل در نمونه های حقیقی شکلات در شرایط بهینه پیش تغلیظ و با دستگاه جذب اتمی برق گرمایی اندازه گیری شد. عامل های تجزیه ای نیز شامل گستره خطی بودن 1 تا µg l-1100، حدتشخیص µg kg-1 45/0، درصد بازیافت 8/97 تا 2/100 ، انحراف استاندارد نسبی 22/0 تا 68/0 % و عامل پیش تغلیظ برابر با 50 تعیین شدند. این روش، روشی ساده، سریع، کم هزینه، موثر، بسیار حساس و دوستدار محیط زیست برای اندازه گیری نیکل درنمونه های شکلات است.
Cocoa beans contain unsaturated fats and a nickel catalyst is used to hydrate the unsaturated fats. Nickel can be present in high concentrations in chocolate. In this research, dispersion solid phase extraction combined with electrothermal atomic absorption method as a new method for measuring nickel in chocolate samples. First, strontium hexaferrite magnetic nanosorbents were synthesized. Then its surface was modified with acetyl trimethylammonium bromide (CTAB) surfactant and magnetic nanosorbent SrFe12O19@CTAB was prepared. The characteristics of the synthesized adsorbent were studied by thermogravimetric analysis-differential scanning calorimetric (TGA-DSC), X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and field emission scanning electron microscopy (FESEM). The optimum amount of effective parameters of extraction (pH=8, adsorbent amount of 50 mg, and type of eluent solvent of 2% (v/v) methanol in nitric acid with a volume of 2 ml) were obtained. Finally, nickel was preconcentrated in real chocolate samples under optimal conditions. It was measured by electrothermal atomic absorption spectrometer. Analytical parameters such as linear working range of the calibration curve 1-100 µg l-1, the detection limit (LOD) 0.45 µg kg-1, the recovery values ranged from 97.8 to 100.2%, relative standard deviation of 0.22-0.68% for all samples and preconcentration factor of 50 were found. This method is a simple, fast, low-cost, effective, high sensitivity, and environmentally friendly method for measuring nickel in chocolate samples.
[1] Sadeghi, M.; Shiri, F.; Kordestani, D.; Mohammadi, P.; Alizadeh, A.; Journal of the Iranian Chemical Society 15, 753–768, 2018.
[2] Reclo, M.; Yilmaz, E.; Soylak, M.; Andruch,V.; Bazel, Y.; Journal of Molecular Liquids 237, 236-241, 2017.
[3] Begum, K.; Reddy, P.V.; Leelaja, B.C.; Rajashekar, Y.; Rajendran, S.; Journal of Stored Products Research 43, 118-122, 2007.
[4] Ieggli, C.V.; Bohrer, D.; Nascimento, P.C.; Carvalho, L.M.; Gobo, L.A.; Journal of Food Composition and Analysis 24, 465-468, 2011.
[5] Todorovic,V.; Redovnikovic, I.R.; Todorovic, Z.; Jankovic, G.; Dodevska, M.; Sobajic, S.; Journal of Food Composition and Analysis 41, 137-143, 2015.
[6] Yanus, R.L.; Sela, H.; Borojovich, E.J.; Zakon, Y.; Saphier, M.; Nikolski, A.; Karpas, Z.; Talanta 119, 1-4, 2014.
[7] Temel, N.K.; Sertakan, K.; Gürkan, R.; Biolgical Trace Element Research 186, 597-607, 2018.
[8] Das, K.K.; Das, S.N.; Dhundasi, S.A.; Indian Journal of Medical Research 128, 412-421, 2008.
[9] Huang, C.; Hu, B.; Spectrochimica Acta Part B: Atomic Spectroscopy 63, 437-444, 2008.
[10] Elik, A.; Altunay, N.; Gürkan, R.; Journal Molecular Liquids 247, 262-268, 2017.
[11] Ignatev, N.V.; W-Biermann, U.; Kucheryna, A.; Bissky, G.; Willner, H.; Journal of Fluorine Chemistry 126, 1150-1159, 2005.
[12] Cassella, R.J.; Brum, D.M.; Robaina, N.F.; Lima, C.F.; Fuel 215, 592-600, 2018.
[13] Sorouraddin, S.M.; Nouri, S.; Analytical Methods 8, 1396-1404, 2016.
[14] Yolcu, Ş.M.; Fırat, M.; Chormey, D.S.; Büyükpınar, Ç.; Turak, F.; Bakırdere, S.; Bulletin of environmental contamination and toxicology 100, 715–719, 2018.
[15] Khorshidi,N.; Niazi, A.; Separation Science and Technology 51, 1675–1683, 2016.
[16] Shemirani, F.; Behgozin, S.M.; Journal of the Iranian Chemical Society 15, 1907–1912, 2018.
[17] Vinhal, J.O.; Cassella, R.J.; Spectrochimica Acta Part B: Atomic Spectroscopy 151, 33–40, 2019.
[18] Meira, L.A.; Almeida, J.S.; Dias, F.de S.; Pedra, P.P.; Pereira, A.L.C.; Teixeira, L.S.G.; Microchemical Journal 142, 144–151, 2018.
[19] Greenberg, R.R.; Bode, P.; Fernandes, E.A.D.N.; Spectrochimica Acta Part B: Atomic Spectroscopy 66, 193-241, 2011.
[20] Luo, J.; Xu, F.; Tu, J.; Wu, X.; Hou, X.; Microchemical Journal 132, 245–250, 2017.
[21] Jerše, A.; Jaćimović, R.; Maršić, N.K.; Germ, M.; Šircelj, H.; Stibilj, V.; Microchemical Journal 137, 355–362, 2018.
[22] Xuxu, Z.; Jianjie, L.; Aiguo, G.; Danhong, W.; Min, Z.; Atomic Spectroscopy 38, 77–85, 2017.
[23] Kiani, E.; Rozatian, A.S.H.; Yousefi, M.H.; Journal of Magnetism and Magnetic Materials 361, 25–29, 2014.
[24] Pullar, R.C.; Bdikin, I.K.; Bhattacharya, A.K.; Journal of the European Ceramic Society 32, 905–913, 2012.
[25] Parham, H.; Zargar, B.; Rezazadeh, M.; Materials Science and Engineering: C 32, 2109-2114, 2012.
[26] Haijun, Z.; Zhichao, L.; Chenliang, M.; Xi, Y.; Mingzhong, Z.W.; Materials Chemistry and Physics 80, 129-135, 2003.
[27] Kustov, E.F.; Novotortsev, V.M.; Serebryannikov, S.V.; Cheparin, V.P.; Russian Journal of Inorganic Chemistry 56, 591-596, 2011.
[28] Mosleh, Z.; Kameli, P.; Poorbaferani, A.; Ranjbar, M.; Salamati, H.; Journal of Magnetism and Magnetic Materials 397, 101-107, 2016.
[29] Kishi, Y.; Shigemi, S.; Doihara, S.; Mostafa.M, G.; Wase.K.; Hydrometallurgy 47, 325–338, 1998.
[30] Scholz, F.; Kahlert, H.; ChemTexts 7, 1-9, 2015.
[31] Mahmoud, M.E.; Talanta 45, 309-315, 1997.
[32] Zhou, Q.; Ding, Y.; Xiao, J.; Analytical and Bioanal Chemistry 385, 1520-1525, 2006.
[33] Chen, B.; Hu, C.; Shao, J.; Li, D.; Journal of Hazardous Materials 164, 923-928, 2009.
[34] Altunay, N.; Elik, A.; Gürkan, R.J.M.J.; Microchemical Journal 147, 277-285, 2019.
[35] Dubey, S.; Banerjee, S.; Upadhyay, S.N.; Sharma, Y.C.; Journal of Molecular Liquids 240, 656-677, 2017.
[36] Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Rahman, M.T.; Hao, K.W.; Hidajat, K.; Uddin, M.S.; Chemical Engineering Journal 225, 607-615, 2013.
[37] Nassar, N.N.; Journal of hazardous materials 184, 1-3, 2010.
[38] Vollath, D.; KGaA, W.-V.V.G.; Environmental Engineering and Management Journal 7, 6-10, 2008.
[39] Wang, M.H.; Lei, D.; Qu, D.; Zhai, Y.; Wang, Y.; Journal of Environmental Sciences 25, 3-7, 2013.
[40] Dubey, A.S.; Banerjee, A.S.; Upadhyay, B.S.N.; Chandra Sharma, Y.; Journal of Molecular Liquids 240, 656-677, 2017.
[41] Seliema, M.K.; Mobarak, M.; Journal of Molecular Liquids 294, 111676, 2019.
[42] Hsu, K.C.; Lee, C.F.; Chao, Y.Y.; Hung, C.C.; Chen, P.C.; Chiang, C.H.; Huang, Y.L.; Journal of Analytical Atomic Spectrometry 31, 2338–2345, 2016.
[43] Temel, N.K.; Sertakan, K.; Gürkan, R.; Biological Trace Element Research 186, 597–607, 2018.
[44] Wang, Y.; Zhang, J.; Zhao, B.; Du, X.; Ma, J.; Li, J.; Biological Trace Element Research 144, 1381–1393, 2011.
[45] Khani, R.; Shemirani, F.; Food Analytical Methods 6, 386–394, 2013.
[46] Altunay, N.; Elik, A.; Gürkan, R.; Microchemical Journal 147, 277–285, 2019.
[47] Wang, Y.; Gao, S.; Ma, J.; Li, J.; Journal of the Chinese Chemical Society 59, 1468–1477, 2012.
[48] Pourjavid, M.R.; Arabieh, M.; Yousefi, S.R.; Jamali, M.R.; Rezaee, M.; Hosseini, M.H.; Sehat, A.A.; Materials Science and Engineering: C 47, 114–122, 2015.
[49] Khazaeli, S.; Nezamabadi, N.; Rabani, M.; Panahi, H.A.; Microchemical Journal 106, 147–153, 2013.
[50] Barreto, J.A.; de Assis, R. dos S.; Cassella, R.J.; Lemos, V.A.; Talanta 193, 23–28, 2019.
_||_[1] Sadeghi, M.; Shiri, F.; Kordestani, D.; Mohammadi, P.; Alizadeh, A.; Journal of the Iranian Chemical Society 15, 753–768, 2018.
[2] Reclo, M.; Yilmaz, E.; Soylak, M.; Andruch,V.; Bazel, Y.; Journal of Molecular Liquids 237, 236-241, 2017.
[3] Begum, K.; Reddy, P.V.; Leelaja, B.C.; Rajashekar, Y.; Rajendran, S.; Journal of Stored Products Research 43, 118-122, 2007.
[4] Ieggli, C.V.; Bohrer, D.; Nascimento, P.C.; Carvalho, L.M.; Gobo, L.A.; Journal of Food Composition and Analysis 24, 465-468, 2011.
[5] Todorovic,V.; Redovnikovic, I.R.; Todorovic, Z.; Jankovic, G.; Dodevska, M.; Sobajic, S.; Journal of Food Composition and Analysis 41, 137-143, 2015.
[6] Yanus, R.L.; Sela, H.; Borojovich, E.J.; Zakon, Y.; Saphier, M.; Nikolski, A.; Karpas, Z.; Talanta 119, 1-4, 2014.
[7] Temel, N.K.; Sertakan, K.; Gürkan, R.; Biolgical Trace Element Research 186, 597-607, 2018.
[8] Das, K.K.; Das, S.N.; Dhundasi, S.A.; Indian Journal of Medical Research 128, 412-421, 2008.
[9] Huang, C.; Hu, B.; Spectrochimica Acta Part B: Atomic Spectroscopy 63, 437-444, 2008.
[10] Elik, A.; Altunay, N.; Gürkan, R.; Journal Molecular Liquids 247, 262-268, 2017.
[11] Ignatev, N.V.; W-Biermann, U.; Kucheryna, A.; Bissky, G.; Willner, H.; Journal of Fluorine Chemistry 126, 1150-1159, 2005.
[12] Cassella, R.J.; Brum, D.M.; Robaina, N.F.; Lima, C.F.; Fuel 215, 592-600, 2018.
[13] Sorouraddin, S.M.; Nouri, S.; Analytical Methods 8, 1396-1404, 2016.
[14] Yolcu, Ş.M.; Fırat, M.; Chormey, D.S.; Büyükpınar, Ç.; Turak, F.; Bakırdere, S.; Bulletin of environmental contamination and toxicology 100, 715–719, 2018.
[15] Khorshidi,N.; Niazi, A.; Separation Science and Technology 51, 1675–1683, 2016.
[16] Shemirani, F.; Behgozin, S.M.; Journal of the Iranian Chemical Society 15, 1907–1912, 2018.
[17] Vinhal, J.O.; Cassella, R.J.; Spectrochimica Acta Part B: Atomic Spectroscopy 151, 33–40, 2019.
[18] Meira, L.A.; Almeida, J.S.; Dias, F.de S.; Pedra, P.P.; Pereira, A.L.C.; Teixeira, L.S.G.; Microchemical Journal 142, 144–151, 2018.
[19] Greenberg, R.R.; Bode, P.; Fernandes, E.A.D.N.; Spectrochimica Acta Part B: Atomic Spectroscopy 66, 193-241, 2011.
[20] Luo, J.; Xu, F.; Tu, J.; Wu, X.; Hou, X.; Microchemical Journal 132, 245–250, 2017.
[21] Jerše, A.; Jaćimović, R.; Maršić, N.K.; Germ, M.; Šircelj, H.; Stibilj, V.; Microchemical Journal 137, 355–362, 2018.
[22] Xuxu, Z.; Jianjie, L.; Aiguo, G.; Danhong, W.; Min, Z.; Atomic Spectroscopy 38, 77–85, 2017.
[23] Kiani, E.; Rozatian, A.S.H.; Yousefi, M.H.; Journal of Magnetism and Magnetic Materials 361, 25–29, 2014.
[24] Pullar, R.C.; Bdikin, I.K.; Bhattacharya, A.K.; Journal of the European Ceramic Society 32, 905–913, 2012.
[25] Parham, H.; Zargar, B.; Rezazadeh, M.; Materials Science and Engineering: C 32, 2109-2114, 2012.
[26] Haijun, Z.; Zhichao, L.; Chenliang, M.; Xi, Y.; Mingzhong, Z.W.; Materials Chemistry and Physics 80, 129-135, 2003.
[27] Kustov, E.F.; Novotortsev, V.M.; Serebryannikov, S.V.; Cheparin, V.P.; Russian Journal of Inorganic Chemistry 56, 591-596, 2011.
[28] Mosleh, Z.; Kameli, P.; Poorbaferani, A.; Ranjbar, M.; Salamati, H.; Journal of Magnetism and Magnetic Materials 397, 101-107, 2016.
[29] Kishi, Y.; Shigemi, S.; Doihara, S.; Mostafa.M, G.; Wase.K.; Hydrometallurgy 47, 325–338, 1998.
[30] Scholz, F.; Kahlert, H.; ChemTexts 7, 1-9, 2015.
[31] Mahmoud, M.E.; Talanta 45, 309-315, 1997.
[32] Zhou, Q.; Ding, Y.; Xiao, J.; Analytical and Bioanal Chemistry 385, 1520-1525, 2006.
[33] Chen, B.; Hu, C.; Shao, J.; Li, D.; Journal of Hazardous Materials 164, 923-928, 2009.
[34] Altunay, N.; Elik, A.; Gürkan, R.J.M.J.; Microchemical Journal 147, 277-285, 2019.
[35] Dubey, S.; Banerjee, S.; Upadhyay, S.N.; Sharma, Y.C.; Journal of Molecular Liquids 240, 656-677, 2017.
[36] Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Rahman, M.T.; Hao, K.W.; Hidajat, K.; Uddin, M.S.; Chemical Engineering Journal 225, 607-615, 2013.
[37] Nassar, N.N.; Journal of hazardous materials 184, 1-3, 2010.
[38] Vollath, D.; KGaA, W.-V.V.G.; Environmental Engineering and Management Journal 7, 6-10, 2008.
[39] Wang, M.H.; Lei, D.; Qu, D.; Zhai, Y.; Wang, Y.; Journal of Environmental Sciences 25, 3-7, 2013.
[40] Dubey, A.S.; Banerjee, A.S.; Upadhyay, B.S.N.; Chandra Sharma, Y.; Journal of Molecular Liquids 240, 656-677, 2017.
[41] Seliema, M.K.; Mobarak, M.; Journal of Molecular Liquids 294, 111676, 2019.
[42] Hsu, K.C.; Lee, C.F.; Chao, Y.Y.; Hung, C.C.; Chen, P.C.; Chiang, C.H.; Huang, Y.L.; Journal of Analytical Atomic Spectrometry 31, 2338–2345, 2016.
[43] Temel, N.K.; Sertakan, K.; Gürkan, R.; Biological Trace Element Research 186, 597–607, 2018.
[44] Wang, Y.; Zhang, J.; Zhao, B.; Du, X.; Ma, J.; Li, J.; Biological Trace Element Research 144, 1381–1393, 2011.
[45] Khani, R.; Shemirani, F.; Food Analytical Methods 6, 386–394, 2013.
[46] Altunay, N.; Elik, A.; Gürkan, R.; Microchemical Journal 147, 277–285, 2019.
[47] Wang, Y.; Gao, S.; Ma, J.; Li, J.; Journal of the Chinese Chemical Society 59, 1468–1477, 2012.
[48] Pourjavid, M.R.; Arabieh, M.; Yousefi, S.R.; Jamali, M.R.; Rezaee, M.; Hosseini, M.H.; Sehat, A.A.; Materials Science and Engineering: C 47, 114–122, 2015.
[49] Khazaeli, S.; Nezamabadi, N.; Rabani, M.; Panahi, H.A.; Microchemical Journal 106, 147–153, 2013.
[50] Barreto, J.A.; de Assis, R. dos S.; Cassella, R.J.; Lemos, V.A.; Talanta 193, 23–28, 2019.