ارائه راهکاری جهت افزایش سرعت توزیع کلید، در رمزنگاری کوانتومیِ مستقل از دستگاه های اندازه گیری
محورهای موضوعی : مجله فناوری اطلاعات در طراحی مهندسی
محمدرضا سلطان آقایی
1
*
,
فرزانه کاویانی
2
1 - گروه کامپیوتر، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران.
2 - گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، واحد اصفهان(خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
کلید واژه: رمزنگاری کوانتومی, سرعت توزیع کلید رمز, MDI-QKD,
چکیده مقاله :
الگوریتم توزیع کلید کوانتومی مستقل از دستگاه های اندازه گیری (MDI-QKD) به علت سازگاری با تکنولوژی رایج، سرعت و برد بالاتر نسبت به سایر روش های رمزنگاری کوانتومی و پوشش دادن نواقص دستگاه ها، استفاده شده است. علی رغم مزیت های ذکر شده، سرعت تبادل کلید در روش های رمزنگاری کوانتومی از جمله MDI-QKD، نیازمند بهینه سازی است. هدف مقاله حاضر، ارائه راهکاری است که ضمن تضمین کامل امنیت و برد مناسب انتقال اطلاعات در الگوریتم MDI-QKD، سرعت توزیع کلید رمز را نسبت به روش های فعلی، بهبود ببخشد. مقاله حاضر مدلی جدید برای الگوریتم MDI-QKD ارائه نموده است که از طریق حذف فرد میانی، استفاده از پالس منسجم تضعیف شده به جای تک فوتون، استفاده از حالات سیگنال-تله و استفاده از یک مسیر منسجم به جای دو مسیر مستقل برای کانال کوانتومی، موفق شده است با اعمال داده های تصادفی با توزیع یکنواخت و با فرکانس 20MHz، سرعت توزیع کلید 2.1 Mbps و برد مؤثر 220 کیلومتر را بدست آورد. در حالی که بهینه سازی های ارائه شده پیشین در زمینه الگوریتم MDI-QKD سرعت 1 Mbps را حاصل نموده است که برتری مدل ارائه شده نسبت به آنان مشهود است.
Quantum key distribution algorithm independent of measuring devices (MDI-QKD) has been used due to its compatibility with common technology, higher speed and range than other quantum cryptography methods and covering device defects. Despite the mentioned advantages, the speed of key distribution in quantum cryptography protocol, including MDI-QKD, needs to be optimized. The purpose of this article is to provide a solution that improves the speed of key distribution compared to current methods while ensuring complete security and transfer range in the MDI-QKD algorithm. The paper presents a new model for the MDI-QKD algorithm through eliminating the middleman, using a weak coherent pulse instead of a single photon, the signal-trap states, and a coherent path instead of two independent paths for the quantum channel, using random data with a uniform distribution. Therefore, with a frequency of 20 MHz, it has obtained a key distribution speed of 2.1 Mbps and a range of 220 km. While the previously presented optimizations in the field of MDI-QKD algorithm have achieved a speed of 1 Mbps, which the superiority of the presented model over them is evident.
مراجع [1] D. K. Sharma, N. C. Singh, D. A. Noola, A. N. Doss, and J. Sivakumar, "A review on various cryptographic techniques & algorithms," Materials Today: Proceedings, vol. 51, pp. 104-109, 2022.
[2] C. Portmann and R. Renner, "Security in quantum cryptography," Reviews of Modern Physics, vol. 94, no. 2, p. 025008, 2022.
[3] X.-L. Pang et al., "Hacking quantum key distribution via injection locking," Physical Review Applied, vol. 13, no. 3, p. 034008, 2020.
[4] F.-X. Wang, J. Wu, W. Chen, S. Wang, and D.-Y. He, "Perceiving Quantum Hacking for Quantum Key Distribution Using Temporal Ghost Imaging," Physical Review Applied, vol. 15, no. 3, p. 034051, 2021.
[5] A. Ponosova, D. Ruzhitskaya, P. Chaiwongkhot, V. Egorov, V. Makarov, and A. Huang, "Protecting fiber-optic quantum key distribution sources against light-injection attacks," PRX Quantum, vol. 3, no. 4, p. 040307, 2022.
[6] A. Huang, Á. Navarrete, S.-H. Sun, P. Chaiwongkhot, M. Curty, and V. Makarov, "Laser-seeding attack in quantum key distribution," Physical Review Applied, vol. 12, no. 6, p. 064043, 2019.
[7] A. Sharma and A. Kumar, "A survey on quantum key distribution," in 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), 2019, vol. 1: IEEE, pp. 1-4.
[8] Y. Liu et al., "Experimental measurement-device-independent quantum key distribution," Physical review letters, vol. 111, no. 13, p. 130502, 2013.
[9] Y.-L. Tang et al., "Measurement-device-independent quantum key distribution over untrustful metropolitan network," Physical Review X, vol. 6, no. 1, p. 011024, 2016.
[10] Y.-J. Qian et al., "Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors," Physical Review Applied, vol. 10, no. 6, p. 064062, 2018.
[11] H.-K. Lo, M. Curty, and B. Qi, "Measurement-device-independent quantum key distribution," Physical review letters, vol. 108, no. 13, p. 130503, 2012.
[12] M. Mehic et al., "Quantum key distribution: a networking perspective," ACM Computing Surveys (CSUR), vol. 53, no. 5, pp. 1-41, 2020.
[13] P. W. Shor and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol," Physical review letters, vol. 85, no. 2, p. 441, 2000.
[14] W. K. Wootters and W. H. Zurek, "The no-cloning theorem," Physics Today, vol. 62, no. 2, pp. 76-77, 2009.
[15] A. Ling, M. Peloso, I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Experimental E91 quantum key distribution," Advanced Optical Concepts in Quantum Computing, Memory, and Communication, vol. 6903, p. 69030U, 2008.
[16] C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, "Concise security bounds for practical decoy-state quantum key distribution," Physical Review A, vol. 89, no. 2, p. 022307, 2014.
[17] U. Vazirani and T. Vidick, "Fully device independent quantum key distribution," Communications of the ACM, vol. 62, no. 4, pp. 133-133, 2019.
[18] M. Herrero-Collantes and J. C. Garcia-Escartin, "Quantum random number generators," Reviews of Modern Physics, vol. 89, no. 1, p. 015004, 2017.
[19] V. Padamvathi, B. V. Vardhan, and A. Krishna, "Quantum cryptography and quantum key distribution protocols: a survey," in 2016 IEEE 6th International Conference on Advanced Computing (IACC), 2016: IEEE, pp. 556-562.
[20] X.-Y. Zhou, H.-J. Ding, C.-H. Zhang, J. Li, C.-M. Zhang, and Q. Wang, "Experimental three-state measurement-device-independent quantum key distribution with uncharacterized sources," Optics Letters, vol. 45, no. 15, pp. 4176-4179, 2020.
[21] F. e. Poletti et al., "Towards high-capacity fibre-optic communications at the speed of light in vacuum," Nature Photonics, vol. 7, no. 4, pp. 279-284, 2013.
[22] H.-W. Li, C.-M. Zhang, M.-S. Jiang, and Q.-Y. Cai, "Improving the performance of practical decoy-state quantum key distribution with advantage distillation technology," Communications Physics, vol. 5, no. 1, p. 53, 2022.
[23] F. Grasselli and M. Curty, "Practical decoy-state method for twin-field quantum key distribution," New Journal of Physics, vol. 21, no. 7, p. 073001, 2019.
[24] I. W. Primaatmaja, E. Lavie, K. T. Goh, C. Wang, and C. C. W. Lim, "Versatile security analysis of measurement-device-independent quantum key distribution," Physical Review A, vol. 99, no. 6, p. 062332, 2019.
[25] J. Barrett, R. Colbeck, and A. Kent, "Memory attacks on device-independent quantum cryptography," Physical review letters, vol. 110, no. 1, p. 010503, 2013.
[26] P. Chan, J. A. Slater, I. Lucio-Martinez, A. Rubenok, and W. Tittel, "Modeling a measurement-device-independent quantum key distribution system," Optics express, vol. 22, no. 11, pp. 12716-12736, 2014.
[27] D. Chen, Z. Shang-Hong, and S. Lei, "Measurement device-independent quantum key distribution with heralded pair coherent state," Quantum Information Processing, vol. 15, no. 10, pp. 4253-4263, 2016.
[28] X. Yang et al., "Measurement-device-independent entanglement-based quantum key distribution," Physical Review A, vol. 93, no. 5, p. 052303, 2016.
[29] W.-X. Xie et al., "Higher key rate in asymmetric quantum-classical integrated measurement-device-independent quantum-key-distribution systems," vol. 20, no. 5, p. 054042, 2023.
[30] G.-D. Li, W.-C. Cheng, Q.-L. Wang, and J.-C. J. Q. I. P. Liu, "A measurement device independent multi-party quantum key agreement protocol with identity authentication," vol. 22, no. 12, p. 443, 2023.