بررسی اثر عصاره آبی کلزا بر میزان کلروفیل، فعالیت آنزیمهای نیترات ردوکتاز، کاتالاز و پراکسیداز در دانهرست سویا تحت شرایط هیدروپونیک
محورهای موضوعی : ژنتیک
1 - گروه زیستشناسی دانشگاه آزاد اسلامی واحد گرگان
2 - گروه زیستشناسی دانشگاه آزاد اسلامی واحد گرگان
کلید واژه: کاتالاز, کلزا, سویا, کلروفیل, هیدروپونیک, پراکسیداز, نیترات ردوکتاز,
چکیده مقاله :
گیاه کلزا حاوی ترکیبات آللوشیمیایی میباشد که این ترکیبات متابولیسم علفهای هرز و گیاهان زراعی را تحت تاثیر قرار میدهد. هدف از این مطالعه بررسی اثر عصاره آبی کلزا بر میزان کلروفیل و نیز فعالیت آنزیمهای نیترات ردوکتاز کاتالاز و پراکسیداز در ریشه، ساقه و لپه دانهرست سویا تحت شرایط هیدروپونیک میباشد. در این راستا بذرهای گیاه کلزا رقم هایولا 401 تحت شرایط گلدانی کشت و از کل گیاه در مرحله 5 برگی عصاره آبی تهیه شد. این عصاره به محیط کشت هوگلند افزوده و پس از 9 روز میزان کلروفیل a و b در لپه و فعالیت آنزیمهای نیترات ردوکتاز، کاتالاز و پراکسیداز در سه بخش ریشه، ساقه و لپه دانهرست سویا رقم گرگان 3 مورد ارزیابی قرار گرفت. نتایج نشان داد که مقدار کلروفیل a وb در لپهها و نیز فعالیت آنزیمهای کاتالازو پراکسیداز در ریشه، ساقه و لپهدانه رستهای سویا تحت تیمار در مقایسه با شاهد (هوگلند) کاهش یافت، در حالی که فعالیت نیترات ردوکتاز در لپه کاهش و در ریشه و ساقه این گیاهان افزایش یافت.
Canola contains allelochemicals that effect on metabolism of weeds and crop plants.The aim of this research was to study the effect of aquatic extract of canola (Brassica napus L. cv Hyola 401) on chlorophyll content in cotyledon, nitrate reductase, catalase and peroxidase activity in root, stem and cotyledon of soybean seedling (Glycine max L. cv Gorgan 3) in Hoagland culture. The seeds of canola (Brassica napus L.cv Hyola 401) was planted in pot and provided aquatic extract of total plant in 5 leaf stage.This extract was added to Hoagland culture and catalase,peroxidase and nitrate reductase activities in leaf, stem and root and chlorophyll a and b content in cotyledons in soybean seedling (Glycine max L.cv Gorgan3) after 9 days were evaluated. The results showed that chlorophylls (a and b) amounts in cotyledons and catalase and peroxidase in root and stem and cotyledon decreased in comparison with to control (Hoagland only) in while nitrate reductase activity reduced in cotyledon and in root and stem increasd.
Appel, H. M. (1993). Phenolics in ecological interactions: The importance of oxidation. Chem. Ecol. 19: 1521-1552.
Bais, H.P., Vepechedu. R., Gilroy. S., Callaway. R.M. and vivanco. J.M. (2003) Allelopathy: From molecules and genes to species interactions. Science 301: 1377-1380.
Bruisma, j. (1963).The quantitative analysis of chlorophyll a & b in plant extract .Photochem. Photobiol, 12: 241.249.
Brunn, S.A., Muday, G.K. and Haworth, P. (1992). Auxin transport and the interaction of phytotropins. Plant Physiol. 98: 101-107.
Chance, B., and Maehley, A. (1955). Assay of catalases and peroxidase, Methods in Enzymology, 2, 764-775.
Ervin, G.N. and Wetzel, R.G. (2000). Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus ( Juncaceae ) Am. J. Bot. 87: 853-860.
Fettell, N.A. and H. S. Gill 1995. "Long-term effects of tillage, stubble, and nitrogen management on properties of a red-brown earth." Australian Journal of Experimental Agriculture 35: 923-928.
Jimenez-orornio, J.J. and Gliessman, S.R. (1987). In allelochemicals role in agriculture and foresty. American Chemical Society, Washington, Dc. pp: 262-274.
Katalin, N. Omarov, R.T., Evdei, L. and Herman lips, S. (2000). Distribution of the Mo-enzymes. aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea maize L.) roots as affected by nitrogen and Salinity. Plan Sci. 155: 45-58.
Khalid, Sh., Ahmad, T. and Shad, R.A. (2002). Use of allelopathy in agriculture. Asian Journal of Sciences. 3: 292-297.
Koroi, S.A.A. (1989). Gele electrophores tishe and spectrophoto metrscho unter uchungen zomeinfiuss der tem pelature auf straktur der amylase and peroxidose isoenzyme. Physiol.Veg, 20: 15-23.
Malinda, D. K. (1995). Factors in conservation farming that reduce erosion. Australian Journal of Experimental Agriculture 35: 969-978.
Matile, P. Hortensteiner, S., Thomas, H. and Krautler, B. (1996). Chlorophyllase in the chloroplast envelope. Planta. 201: 96-99.
Narwal, S.S and Tauro, P. (1996). Suggested methodology for allelopathy: field observations and Methodology. P. 255-260.
Purvis, C. E. (1990). Differential response of wheat to retained crop stubbles. I. Effect of stubble type and degree of decomposition". Australian Journal of Agricultural Research 41: 225-242.
PengS-L and Shao. H. (2001). Reaserch significance and foreground of allelopathy.Chin J Appl Ecol, 12:780-786.
Rice, E. L. (1984). Allelopathy. 2nd ed. Academic press, Orland. pp: 226-291
Rizivi, S. J. H. and Rizivi. V. (1992). Expoitation of allelochemiocals in improving crop productivity. Cand hall, London. p: 443-473
Shiming, L. (2003). Allelopathy in South china agroecosystems. Institute of Tropical and Subtropical Ecology. P: 40-54
Sym, G.L. (1984). Optimisation of the invivo assay conditions for nitrate reductase in barly. J. Sci. Food. Agri, 35: 725-730.
Williams, R.D. and Hoagland, E. (1982). The effects of naturally Occurring phenolic compounds on seed germination.Weed Sci. 30: 206.
Yang, C.M., Chang, I.F., Lin, S.J. and C.H. (2004). Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedling: II. stimulation of consumption-Orientation. Bot. Bull. Acad. 45: 112-125.
Zeng, R. S., Luo, S. M., Shi, Y.H., Shi, M.B. and Tu, C.Y. (2001). Physiological and biochemical mechanism of allelopathy of Secalonic acid F of higher plants. Agronomy Journal. 93: 72-79.
_||_
Appel, H. M. (1993). Phenolics in ecological interactions: The importance of oxidation. Chem. Ecol. 19: 1521-1552.
Bais, H.P., Vepechedu. R., Gilroy. S., Callaway. R.M. and vivanco. J.M. (2003) Allelopathy: From molecules and genes to species interactions. Science 301: 1377-1380.
Bruisma, j. (1963).The quantitative analysis of chlorophyll a & b in plant extract .Photochem. Photobiol, 12: 241.249.
Brunn, S.A., Muday, G.K. and Haworth, P. (1992). Auxin transport and the interaction of phytotropins. Plant Physiol. 98: 101-107.
Chance, B., and Maehley, A. (1955). Assay of catalases and peroxidase, Methods in Enzymology, 2, 764-775.
Ervin, G.N. and Wetzel, R.G. (2000). Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus ( Juncaceae ) Am. J. Bot. 87: 853-860.
Fettell, N.A. and H. S. Gill 1995. "Long-term effects of tillage, stubble, and nitrogen management on properties of a red-brown earth." Australian Journal of Experimental Agriculture 35: 923-928.
Jimenez-orornio, J.J. and Gliessman, S.R. (1987). In allelochemicals role in agriculture and foresty. American Chemical Society, Washington, Dc. pp: 262-274.
Katalin, N. Omarov, R.T., Evdei, L. and Herman lips, S. (2000). Distribution of the Mo-enzymes. aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea maize L.) roots as affected by nitrogen and Salinity. Plan Sci. 155: 45-58.
Khalid, Sh., Ahmad, T. and Shad, R.A. (2002). Use of allelopathy in agriculture. Asian Journal of Sciences. 3: 292-297.
Koroi, S.A.A. (1989). Gele electrophores tishe and spectrophoto metrscho unter uchungen zomeinfiuss der tem pelature auf straktur der amylase and peroxidose isoenzyme. Physiol.Veg, 20: 15-23.
Malinda, D. K. (1995). Factors in conservation farming that reduce erosion. Australian Journal of Experimental Agriculture 35: 969-978.
Matile, P. Hortensteiner, S., Thomas, H. and Krautler, B. (1996). Chlorophyllase in the chloroplast envelope. Planta. 201: 96-99.
Narwal, S.S and Tauro, P. (1996). Suggested methodology for allelopathy: field observations and Methodology. P. 255-260.
Purvis, C. E. (1990). Differential response of wheat to retained crop stubbles. I. Effect of stubble type and degree of decomposition". Australian Journal of Agricultural Research 41: 225-242.
PengS-L and Shao. H. (2001). Reaserch significance and foreground of allelopathy.Chin J Appl Ecol, 12:780-786.
Rice, E. L. (1984). Allelopathy. 2nd ed. Academic press, Orland. pp: 226-291
Rizivi, S. J. H. and Rizivi. V. (1992). Expoitation of allelochemiocals in improving crop productivity. Cand hall, London. p: 443-473
Shiming, L. (2003). Allelopathy in South china agroecosystems. Institute of Tropical and Subtropical Ecology. P: 40-54
Sym, G.L. (1984). Optimisation of the invivo assay conditions for nitrate reductase in barly. J. Sci. Food. Agri, 35: 725-730.
Williams, R.D. and Hoagland, E. (1982). The effects of naturally Occurring phenolic compounds on seed germination.Weed Sci. 30: 206.
Yang, C.M., Chang, I.F., Lin, S.J. and C.H. (2004). Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedling: II. stimulation of consumption-Orientation. Bot. Bull. Acad. 45: 112-125.
Zeng, R. S., Luo, S. M., Shi, Y.H., Shi, M.B. and Tu, C.Y. (2001). Physiological and biochemical mechanism of allelopathy of Secalonic acid F of higher plants. Agronomy Journal. 93: 72-79.