بررسی فیزیولوژی بردباری گیاه نی (Phragmites australis) نسبت به آرسنیک در منطقه آلوده چلپو ـ کاشمر
محورهای موضوعی : ژنتیکحدیث یوسف زاده 1 , مهلقا قربانلی 2 , فرشته قاسمزاده 3
1 - گروه زیست شناسی، دانشکده علوم، دانشگاه پیام نور تهران
2 - گروه زیست شناسی، دانشگاه آزاد گرگان
3 - گروه زیست شناسی، دانشکده علوم، دانشگاه فردوسی مشهد
کلید واژه: آرسنیک, نی, چلپو, بردباری, بیش انباشت,
چکیده مقاله :
این مطالعه بردباری گیاه نی L. Phragmites australis را در برابر آرسنیک بررسی میکند. بدین منظور گیاهان از پنج ایستگاه در منطقه آلوده چلپو- کاشمر در شمال شرقی ایران جمعآوری شدند. اندازهگیری عناصر روی، منیزیم، آهن، کلسیم و آرسنیک در نمونههای جمعآوری شده پس از آمادهسازی، با دستگاه اسپکترومتری جذب اتمی انجام شد. تمام قسمتهای گیاه نی قادر به حذف آرسنیک از خاکهای آلوده هستند. بیشترین میزان انباشت آرسنیک در اندامهای هوایی و ریشهها به ترتیب 82/6 و 56/23 میلیگرم در کیلوگرم میباشد. آرسنیک عمدتاً در ریشه انباشت میشود و مقادیر بسیار کم آن به اندامهای هوایی انتقال داده میشود. الگوی تجمع آرسنیک در گیاه نی پس از ریشههای مویی به ترتیب در ریزوم، ساقه و برگ دارای بیشترین میزان خود میباشد. در این مطالعه همگام با جذب آرسنیک در گیاه نی جذب پتاسیم و آهن افزایش مییابد. در حالی که کلسیم و منیزیم در مقایسه با گیاهان کنترل تغییر قابل ملاحظهای را نشان نمیدهند. همانندی الگوی انباشت آرسنیک و آهن در ریشهها و افزایش 4 و 5/13 برابری جذب آهن به ترتیب در ریشهها و ساقههای گیاهان جمعآوری شده از منطقه آلوده چلپو نسبت به گیاهان شاهد پیشنهاد میکند که درگیاه نی، آهن نقش اساسی را در سمزدایی ایفا میکند. این گیاه میتواند به عنوان یک گونه بردبار به آرسنیک معرفی شود و کشت آن در مقیاس گسترده باعث جذب میزان بالایی از آرسنیک در نواحی آلوده و به دنبال آن پاکسازی محیط از آرسنیک شود.
This study was examined arsenic tolerance in Phragmites australis L, common reed. We collected plants from five contaminated stations in Chelpo-Kashmar, northeast Iran. Determination of As, Fe, Ca, Mg and Zn was done by atomic absorption spectrometry on the prepared samples. All parts of common reed had efficiencies for removal As from contaminated soils. Maximum accumulation in shoot and roots of common reed was 6.82 and 23.56 mg Kg-1 respectively. Arsenic accumulated mainly in roots of common reed and only minor amount of As translocated to shoot. In P. australis accumulation model followed as this order Root>Rhizome>Stem>leave. In this study following As increment, uptake of K and Fe increased while Ca and Mg didn’t significantly different in contrast to control plants among stations. Root accumulation model similarity between Fe and As and increment 4 and 13.5 times of Fe in root and shoots of contaminated plants in contrast to control plants suggested that Fe play a key role in As detoxification in this plant. Common reed has a good potential to be used for removing As from polluted environment.
ابراهیمزاده، ح. (1373). فیزیولوژی گیاهی 1، انتشارات و چاپ دانشگاه تهران، 576 صفحه.
قهرمان، ا. (1373). کروموفیتهای ایران(سیستماتیک گیاهی)، جلد چهارم، چاپ اول،مرکز نشر دانشگاهی تهران.
مظلومی بجستانی، ع. (1382). مطالعه زمین شناسی و ژئوشیمی نواحی طلا دار علی آباد گردنه کوهسرخ در شمال کاشمر (استان خراسان رضوی)، پایان نامه دوره کارشناسی ارشد دانشگاه شهید بهشتی.
Adriano, D.C., (2001). Trace Elements in the Terrestrial Environment. Springer, New York.
Aksorn, E. and Visoottiviseth, P. (2004). Selection of suitable emergent plants for removal of arsenic from arsenic contaminated water, Science Asia.30,105-113.
Ali, N.A., Bernal, M.P., Ater, M., (2002). Tolerance and bioaccumulation of copper in Phragmites australis roots, physiological plantarum. 121, 66-74.
Carbonell, A.A., Aarabi, M.A., Gambrell, R.P., Patrick, W.H. J.R., (1998). Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci. Total environment. 217, 189- 199.
Chu, W.K., Wong, M.H., Zhang. J., (2006). Accumulation, distribution and transformation DDT. PCBs by Phragmites australis and Oryza sativum. Environmental geochemistry. 28, 159-168.
Eisler, R. et al. (2002). Hand book of chemical risk assessment, CRC press, 274pp, Journal of applied sciences, 6(13):2705-2714.
Ederli, L., Reale, L., Ferranti, F., Pasaqualini, S., (2004). Responses induced by high concentration of cadmium in Phragmites australis roots. Physiological plantarum. 121, 66-74.
Foyer, C.H., Lelandais, M., Kunert, K.J., (1994). Photooxidativew stress in plants. Physiol Plant, 92, 697- 717.
Ghassemzadeh, F., Arbab-Zavar, M.H., McLennan, G., (2006). Arsenic and Antimony in drinking water in Kohsorkh area, Northeast Iran, possible risks for public health”, Journal of applied sciences, 6(13):2705-2714.
Ghassemzadeh, G., Yousefzadeh, H., Arbabzavar, M.H., (2007). Arsenic phytoremediation by Phragmites australis: green technology International journal of Environmental studies, submit.
Lee, B.H., Scolz, M., (2007. What is the role of Phragmites australis in experimental constructed wetland filters treating urban run off, Ecological engineering. 29, 87-95.
Lombi, E., Zhao, F.J. Dunham, S.J. and McGrath. S.P. (2002). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol.145, 11-20.
Meharg, A.A., Bailey, J., Breadmore, K., Macnair, M.R., (1994). Biomass allocation, phosphorous nutrition and vesiculararbuscular mycorrhiza infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant Soil.160, 11-20.
Meharg, A.A., and Hartley–Whitaker, J. (2002). Arsenic uptake and metabolisms in arsenic resistant and non resistant plant species, New Phytologist, Tansley review no.133 (154):29-43.
Porter, E.K. and Peterson, P.J. (1975). Arsenic accumulation by plants on mine waste. Sci.Total Env.4:365-371.
Singh, N., Ma, L.Q., Srivastava, M., Rathinasabapathi, B., (2006). Metabolic adaptation to arsenic- induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Science. 170, 274-282.
Suresh, B. Ravishanker, G.A. (2004). Phytoremediation a Novel and promising approach for environmental clean up.critical reviews in Biotechnol.24 (2-3):97-124.
Wallis, C. (1999). Practical biology (A laboratory manual). Heinmann medical.
Wang, T., Peverly, J.H., (1996). Oxidation states and fractionation of plaque iron on roots of common reeds. Soil Sci. Soc.Am.J.60, 323-329.
Wu, L., (1990). Colonization and establishment of plants in contaminated sites. In: Shaw AJ (ed) Heavy metal tolerance in plants: Evolutionary Aspect. CRC Press, Boca Raton, FL, 296-284.
_||_
ابراهیمزاده، ح. (1373). فیزیولوژی گیاهی 1، انتشارات و چاپ دانشگاه تهران، 576 صفحه.
قهرمان، ا. (1373). کروموفیتهای ایران(سیستماتیک گیاهی)، جلد چهارم، چاپ اول،مرکز نشر دانشگاهی تهران.
مظلومی بجستانی، ع. (1382). مطالعه زمین شناسی و ژئوشیمی نواحی طلا دار علی آباد گردنه کوهسرخ در شمال کاشمر (استان خراسان رضوی)، پایان نامه دوره کارشناسی ارشد دانشگاه شهید بهشتی.
Adriano, D.C., (2001). Trace Elements in the Terrestrial Environment. Springer, New York.
Aksorn, E. and Visoottiviseth, P. (2004). Selection of suitable emergent plants for removal of arsenic from arsenic contaminated water, Science Asia.30,105-113.
Ali, N.A., Bernal, M.P., Ater, M., (2002). Tolerance and bioaccumulation of copper in Phragmites australis roots, physiological plantarum. 121, 66-74.
Carbonell, A.A., Aarabi, M.A., Gambrell, R.P., Patrick, W.H. J.R., (1998). Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci. Total environment. 217, 189- 199.
Chu, W.K., Wong, M.H., Zhang. J., (2006). Accumulation, distribution and transformation DDT. PCBs by Phragmites australis and Oryza sativum. Environmental geochemistry. 28, 159-168.
Eisler, R. et al. (2002). Hand book of chemical risk assessment, CRC press, 274pp, Journal of applied sciences, 6(13):2705-2714.
Ederli, L., Reale, L., Ferranti, F., Pasaqualini, S., (2004). Responses induced by high concentration of cadmium in Phragmites australis roots. Physiological plantarum. 121, 66-74.
Foyer, C.H., Lelandais, M., Kunert, K.J., (1994). Photooxidativew stress in plants. Physiol Plant, 92, 697- 717.
Ghassemzadeh, F., Arbab-Zavar, M.H., McLennan, G., (2006). Arsenic and Antimony in drinking water in Kohsorkh area, Northeast Iran, possible risks for public health”, Journal of applied sciences, 6(13):2705-2714.
Ghassemzadeh, G., Yousefzadeh, H., Arbabzavar, M.H., (2007). Arsenic phytoremediation by Phragmites australis: green technology International journal of Environmental studies, submit.
Lee, B.H., Scolz, M., (2007. What is the role of Phragmites australis in experimental constructed wetland filters treating urban run off, Ecological engineering. 29, 87-95.
Lombi, E., Zhao, F.J. Dunham, S.J. and McGrath. S.P. (2002). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol.145, 11-20.
Meharg, A.A., Bailey, J., Breadmore, K., Macnair, M.R., (1994). Biomass allocation, phosphorous nutrition and vesiculararbuscular mycorrhiza infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant Soil.160, 11-20.
Meharg, A.A., and Hartley–Whitaker, J. (2002). Arsenic uptake and metabolisms in arsenic resistant and non resistant plant species, New Phytologist, Tansley review no.133 (154):29-43.
Porter, E.K. and Peterson, P.J. (1975). Arsenic accumulation by plants on mine waste. Sci.Total Env.4:365-371.
Singh, N., Ma, L.Q., Srivastava, M., Rathinasabapathi, B., (2006). Metabolic adaptation to arsenic- induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Science. 170, 274-282.
Suresh, B. Ravishanker, G.A. (2004). Phytoremediation a Novel and promising approach for environmental clean up.critical reviews in Biotechnol.24 (2-3):97-124.
Wallis, C. (1999). Practical biology (A laboratory manual). Heinmann medical.
Wang, T., Peverly, J.H., (1996). Oxidation states and fractionation of plaque iron on roots of common reeds. Soil Sci. Soc.Am.J.60, 323-329.
Wu, L., (1990). Colonization and establishment of plants in contaminated sites. In: Shaw AJ (ed) Heavy metal tolerance in plants: Evolutionary Aspect. CRC Press, Boca Raton, FL, 296-284.