بررسی اثر غلظتهای مختلف اسید سالیسیلیک در بهبود خصوصیات فیزیولوژیکی و بیوشیمیایی گیاهچههای پسته (Pistacia vera L.) رقم اکبری تحت تنش شوری
محورهای موضوعی : ژنتیک
1 - گروه زیست شناسی، دانشکده علوم، دانشگاه پیام نور، تهران 3697-19395، ایران
کلید واژه: کلروفیل, شوری, پسته, پارامترهای رشد, آنتوسیانین, کاروتنوئید,
چکیده مقاله :
سالیسیلیک اسید، یک تنظیم کننده رشد گیاهی است که در تنظیم فرایندهای فیزیولوژیکی و پاسخ گیاه به شرایط نامطلوب زیستی از قبیل شوری، نقش دارد. در تحقیق حاضر سعی شده است تا تاثیر غلظتهای مختلف سالیسیلیک اسید، شوری و برهمکنش آنها بر پارامترهای مورفولوژیکی و بیوشیمیایی در پسته بررسی شود. شوری با غلظتهای صفر، 25، 50، 75 و 100 میلیمولار و سالیسلیک اسید با غلظتهای صفر، 5/0، 1 و 5/1 میلیمولار به صورت محلولپاشی در یک طرح کاملاً تصادفی، به صورت فاکتوریل در سال 1398 در شرایط گلخانهای مورد استفاده قرار گرفتند. نتایج حاصل از این تحقیق نشان داد که شوری باعث کاهش معنیدار رشد اندام هوایی و ریشه، کاهش وزن تر و خشک اندام هوایی و ریشه، همچنین کاهش کلروفیل، کاروتنوئید و آنتوسیانین شد؛ در حالی که در گیاهان پیش تیمار شده با سالیسیلیک اسید، اثر شوری را بر پارامترهای یاد شده تعدیل کرد. با بررسی مطالب فوق میتوان نتیجه گرفت که کاربرد سالیسیلیک اسید، باعث افزایش تحملپذیری گیاه در برابر تنش شوری گشت.
Salicylic acid is a plant growth regulator that is involved in regulating physiological processes and the plants’ response to adverse biological conditions such as salinity. In the present study, an experiment was carried out to investigate the effect of different concentrations of salicylic acid, salinity, and the interaction of salicylic acid and salinity on morphological and biochemical parameters in pistachio. Salinity concentrations of 0, 25, 50, 75, and 100 mM and salicylic acid concentrations of 0, 0.5, 1, and 1.5 mM were used in the form of foliar factorial application in a completely randomized design (CRD) under greenhouse condition in 2019. The results of this study showed that salinity reduced shoot and root growth and fresh and dry weights, as well as chlorophyll, carotenoid, and anthocyanin contents while in plants pre-treated with salicylic acid, the effects of salinity on these parameters were modified. Accordingly, it can be concluded that salicylic acid application protects the plant against salt stress.
Ahanger, M.A. and Agarwal, R.M. (2017). Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma. 254(4): 1471–1486.
Ahmad, P., Abdel Latef, A.A., Hashem, A., Abd-Allah, E.F., Gucel, S. and Tran, L.S.P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science. 7: 347.
Ahmad, P., Alyemeni, M.N., Ahanger, M.A., Egamberdieva, D., Wijaya, L. and Alam, P. (2018). Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in Faba Bean (Vicia faba L.) seedlings under NaCl toxicity. Russian Journal of Plant Physiology. 65 (1): 104-114.
Ahmad, P., Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., John, R. and Egamberdieva, D. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science. 6: 868.
Ahmad, P., Nabi, G. and Ashraf, M. (2011). Cadmium induced oxidative damage in mustard Brassica juncea L. Czern. & Coss. plants can be alleviated by salicylic acid. South African Journal of Botany. 77: 36–44.
Borsani, O., Valpuesta, V. and Botella, M.A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology. 126: 1024–1030.
Es-sbihi, F.Z., Hazzoumi, Z., Aasfar, A. and Joutei, K. A. (2021). Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chemical and Biological Technologies in Agriculture. 8(1): 1-12.
Gunes, A., Inal, A., Alpaslam, M., Erslan, F., Bagsi, E.G. and Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology. 164: 728-736.
Ha-Tran, D.M.; Nguyen, T.T.M.; Hung, S.-H.; Huang, E. and Huang, C.-C. (2021). Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. International Journal of Molecular Sciences. 22: 3154.
Juan, M., Rivero, R.M., Romero, L. and Rviz, J.M. (2005). Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany. 54: 193-201.
Kahveci, H., Bilginer, N., Diraz-Yildirim, E., Kulak, M., Yazar, E., Kocacinar, F. and Karaman, S. (2021). Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Scientia Horticulturae. 281: 109964.
Kao, W.Y., Tsai, T.T., Tsai, H.C. and Shih, C.N. (2006). Response of three glycine species to salt stress. Environmental and Experimental Botany. 56: 120-125.
Kaya, C., Kirnak, H., Higgs, D. and Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity. Scientia Horticulturae. 93: 65–74.
Khan, M.I.R., Asgher, M. and Khan, N.A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mung bean (Vigna radiata L.). Plant Physiology Biochemistry. 80: 67–74.
Khodary, S.E.A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Journal of Agriculture and Biology. 6: 5-8.
Larbi, A., Kchaou, H., Gaaliche, B., Gargouri, K., Boulal, H. and Morales, F. (2020). Supplementary potassium and calcium improves salt tolerance in olive plants. Scientia Horticulturae. 260.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 148: 350-382.
Mahdavian, K. (1396). Effect of different concentrations of salicylic acid on salt tolerance of barley (Hordeum vulgare L.). Journal of Crop Physiology. 36: 136-121.
Mahdavian, K. (1396). The effect of different concentrations of salicylic acid on adjustment of the effects of sodium chloride stress on growth parameters and photosynthetic pigments in sunflower plant (Helianthus annuus L.). Journal of Plant Environmental Physiology. 47: 93-106.
Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M. and Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany. 137: 335-339.
Pirasteh-Anosheh, H., Ranjbar, G., Hasanuzzaman, M., Khanna, K., Bhardwaj, R. and Ahmad, P. (2021). Salicylic Acid-Mediated Regulation of Morpho-Physiological and Yield Attributes of Wheat and Barley Plants in Deferring Salinity Stress. Journal of Plant Growth Regulation. 1-13.
Popova, L.P., Maslenkova, L.T., Yordanova, R.Y., Ivanova, A.P., Krantev, A.P. and Szalai, G. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in Pea seedlings. Plant Physiology and Biochemistry. 47: 224-231.
Rajeshwari, V. and Bhuvaneshwari, V. (2017). Salicylic acid induced salt stress tolerance in plants. International Journal of Plant Biology and Research. 5 (3): 1067.
Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V. and Shakirova, F.M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology. 1: 314-319.
Shibli, R.A., Kushad, M., Yousef, G.G. and Lila, M.A. (2007). Physiological and biochemical responses of tomato micro shoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regulation. 51: 159-169.
Stepien, P. and Klobus, G. (2006). Water relations and photosynthesis in Cucumis sativus L. Leaves under salt stress. Biologia Plantarum. 50: 610-616.
Stevens, J., Seneratna, T. and Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation. 49: 77-83.
Wagner, G.J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology. 64: 88–93.
_||_
Ahanger, M.A. and Agarwal, R.M. (2017). Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma. 254(4): 1471–1486.
Ahmad, P., Abdel Latef, A.A., Hashem, A., Abd-Allah, E.F., Gucel, S. and Tran, L.S.P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science. 7: 347.
Ahmad, P., Alyemeni, M.N., Ahanger, M.A., Egamberdieva, D., Wijaya, L. and Alam, P. (2018). Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in Faba Bean (Vicia faba L.) seedlings under NaCl toxicity. Russian Journal of Plant Physiology. 65 (1): 104-114.
Ahmad, P., Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., John, R. and Egamberdieva, D. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science. 6: 868.
Ahmad, P., Nabi, G. and Ashraf, M. (2011). Cadmium induced oxidative damage in mustard Brassica juncea L. Czern. & Coss. plants can be alleviated by salicylic acid. South African Journal of Botany. 77: 36–44.
Borsani, O., Valpuesta, V. and Botella, M.A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology. 126: 1024–1030.
Es-sbihi, F.Z., Hazzoumi, Z., Aasfar, A. and Joutei, K. A. (2021). Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chemical and Biological Technologies in Agriculture. 8(1): 1-12.
Gunes, A., Inal, A., Alpaslam, M., Erslan, F., Bagsi, E.G. and Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology. 164: 728-736.
Ha-Tran, D.M.; Nguyen, T.T.M.; Hung, S.-H.; Huang, E. and Huang, C.-C. (2021). Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. International Journal of Molecular Sciences. 22: 3154.
Juan, M., Rivero, R.M., Romero, L. and Rviz, J.M. (2005). Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany. 54: 193-201.
Kahveci, H., Bilginer, N., Diraz-Yildirim, E., Kulak, M., Yazar, E., Kocacinar, F. and Karaman, S. (2021). Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Scientia Horticulturae. 281: 109964.
Kao, W.Y., Tsai, T.T., Tsai, H.C. and Shih, C.N. (2006). Response of three glycine species to salt stress. Environmental and Experimental Botany. 56: 120-125.
Kaya, C., Kirnak, H., Higgs, D. and Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity. Scientia Horticulturae. 93: 65–74.
Khan, M.I.R., Asgher, M. and Khan, N.A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mung bean (Vigna radiata L.). Plant Physiology Biochemistry. 80: 67–74.
Khodary, S.E.A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Journal of Agriculture and Biology. 6: 5-8.
Larbi, A., Kchaou, H., Gaaliche, B., Gargouri, K., Boulal, H. and Morales, F. (2020). Supplementary potassium and calcium improves salt tolerance in olive plants. Scientia Horticulturae. 260.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 148: 350-382.
Mahdavian, K. (1396). Effect of different concentrations of salicylic acid on salt tolerance of barley (Hordeum vulgare L.). Journal of Crop Physiology. 36: 136-121.
Mahdavian, K. (1396). The effect of different concentrations of salicylic acid on adjustment of the effects of sodium chloride stress on growth parameters and photosynthetic pigments in sunflower plant (Helianthus annuus L.). Journal of Plant Environmental Physiology. 47: 93-106.
Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M. and Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany. 137: 335-339.
Pirasteh-Anosheh, H., Ranjbar, G., Hasanuzzaman, M., Khanna, K., Bhardwaj, R. and Ahmad, P. (2021). Salicylic Acid-Mediated Regulation of Morpho-Physiological and Yield Attributes of Wheat and Barley Plants in Deferring Salinity Stress. Journal of Plant Growth Regulation. 1-13.
Popova, L.P., Maslenkova, L.T., Yordanova, R.Y., Ivanova, A.P., Krantev, A.P. and Szalai, G. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in Pea seedlings. Plant Physiology and Biochemistry. 47: 224-231.
Rajeshwari, V. and Bhuvaneshwari, V. (2017). Salicylic acid induced salt stress tolerance in plants. International Journal of Plant Biology and Research. 5 (3): 1067.
Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V. and Shakirova, F.M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology. 1: 314-319.
Shibli, R.A., Kushad, M., Yousef, G.G. and Lila, M.A. (2007). Physiological and biochemical responses of tomato micro shoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regulation. 51: 159-169.
Stepien, P. and Klobus, G. (2006). Water relations and photosynthesis in Cucumis sativus L. Leaves under salt stress. Biologia Plantarum. 50: 610-616.
Stevens, J., Seneratna, T. and Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation. 49: 77-83.
Wagner, G.J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology. 64: 88–93.