بررسی اثر غلظت¬های مختلف سیلیکون بر برخی پارامتر¬های رشد و فیزیولوژیکی گیاه کلزا (Brassica napus L.) تحت تنش آرسنیک و کادمیوم
محورهای موضوعی : تنشناصر کریمی 1 * , سلیمه خادمی اعظم 2 , زهرا سوری 3
1 - گروه زیست شناسی، دانشگاه رازی کرمانشاه
2 - گروه زیست¬شناسی، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران
3 - گروه زیست¬شناسی، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران
کلید واژه: پارامتر¬های رشد, سیلیکون, فلزات سنگین, کلزا ,
چکیده مقاله :
سیلیکون به¬عنوان دومین عنصر فراوان در خاک و پوسته زمین، می¬تواند رشد گیاهان را افزایش داده و موجب بهبود تنش¬های مختلف از جمله تنش فلزات سنگین گردد. به منظور بررسی اثر سیلیکون بر برخی پارامتر¬های رشد و فیزیولوژیک گیاه کلزا تحت تنش آرسنیک و کادمیوم دو آزمایش مستقل به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. در این پژوهش گیاهان پس از رسیدن به مرحله¬ی چهار برگی به مدت 14 روز تحت اثر تیمار¬های آرسنیک و کادمیوم با غلظت 600 میکرو مولار و سیلیکون با غلظت¬های صفر، 5/0، 1 و2 میلی¬مولار قرار گرفتند. مقایسه این دو عنصر سنگین در تیمار 600 میکرومولار نشان داد که میزان انباشت کادمیوم 145 برابر و آرسنیک 33 برابر تیمار شاهد افزایش یافت که نشان از اثر سمی بیشتر کادمیوم نسبت به آرسنیک بر پارامتر¬های رشد گیاه بود. در مقایسه با تیمار کاربرد آرسنیک یا کادمیوم به تنهایی، بکارگیری سیلیکون بویژه در تیمار 2 میلی مولار باعث بهبود پارامتر¬های رشد (افزایش 5/22 درصدی طول و 8/80 درصدی وزن بخش هوایی در تیمار آرسنیک) می¬شود. همچنین تیمار سیلیکون منجر به کاهش محتوای پراکسید هیدروژن (تا 15 درصد در تیمار آرسنیک و تا 35 درصد در کادمیوم) و در مقابل افزایش فعالیت آنزیم گلوتاتیون - اس- ترانسفراز (تا 75 درصد در تیمار آرسنیک و تا 58 درصد در تیمار کادمیوم) در بخش هوایی گیاه کلزا شد. به طور کلی، سیلیکون پتانسیل گیاه پالایی و مقاومت گیاه کلزا را از طریق بهبود فاکتور¬های رشد، کاهش جذب فلزات سنگین و کاهش آسیب تنش اکسیداتیو بهبود می¬بخشد. لذا می¬توان از سیلیکون برای تولید بهتر محصولات زراعی و افزایش مقاومت این گیاه در شرایط تنش فلزات سنگین استفاده کرد.
Silicon, being the second most abundant element in the soil and the earth's crust, has been shown to possess the ability to promote plant growth and enhance plant response to stress factors such as heavy metals. To investigate the impact of silicon on various growth and physiological parameters of rapeseed (Brassica napus) under arsenic and cadmium stress, a factorial experiment was conducted in the form of a completely randomized design with three replications. After reaching the four-leaf stage, plants were treated with 600 µM arsenic and cadmium and 0, 0.5, 1 and 2 mM silicon for 14 days. The results showed that cadmium was more accumulated than arsenic in the aerial part of rapeseed, so it had significant toxic effects on plant growth parameters. Compared to the single treatment of arsenic or cadmium, silicon supplementation, especially in the 2 mM treatment, decreased hydrogen peroxide content and, on the contrary, increased the activity of glutathione S-transferase. In general, silicon improves the plant healing potential and resistance of rapeseed by improving growth factors, reducing heavy metal uptake, and oxidative stress damage. Therefore, silicon can enhance crop production and increase plants' resistance to heavy metal stress.
Abu-Muriefah, S. S. (2015). Effects of silicon on membrane characteristics, photosynthetic pigments, antioxidative ability, and mineral element contents of faba bean (Vicia faba L.) plants grown under Cd and Pb stress. International Journal of Advanced Research in Biological Sciences. 2(6):1-17.
Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F. and Irshad, M. K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicology and Environmental Safety. 119: 186-197.
Akbari Mogadam, R. (2012). Dry matter partitioning and wheat varieties morphological reaction under drought conditions at different growth stages .PhD. Thesis, Zabul Agriculture University, Zabul, Iran.
Ali, H., Khan, E. and Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere. 91(7): 869-881.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. 24(1): 1-15.
Ashfaque, F., Inam, A., Iqbal, S. and Sahay, S. (2017). Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). South African Journal of Botany. 111: 153-160.
Azam, S. K., Karimi, N., Souri, Z. and Vaculík, M. (2021). Multiple effects of silicon on alleviation of arsenic and cadmium toxicity in hyperaccumulator Isatis cappadocica Desv. Plant Physiology and Biochemistry. 168:177-187.
Babula, P., Ryant, P., Adam, V., Zehnalek, J., Havel, L. and Kizek, R. (2009). The role of sulphur in cadmium (II) ions detoxification demonstrated in in vitro model: Dionaea muscipula Ell. Environmental Chemistry Letters. 7: 353-361.
Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205-207.
Bharwana, S. A., Ali, S., Farooq, M. A., Iqbal, N., Abbas, F. and Ahmad, M. S. A. (2013). Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Journal of Bioremediation & Biodegradation. 4(4): 1-11.
Boorboori, M. R. (2023). Investigating the role of silicon in reducing the risk of arsenic, cadmium, drought and salinity stresses in wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology. 1-18.
Che, J., Yamaji, N., Shao, J. F., Ma, J. F. and Shen, R. F. (2016). Silicon decreases both uptake and root-to-shoot translocation of manganese in rice. Journal of Experimental Botany. 67(5): 1535-1544.
Choudhury, B., Chowdhury, S. and Biswas, A. K. (2011). Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. Journal of Plant Interactions. 6(1): 15-24
Choudhury, B., Mitra, S. and Biswas, A. K. (2010). Regulation of sugar metabolism in rice seedling under arsenate toxicity and its improvement by phosphate. Physiology and Molecular Biology of Plants. 16: 59-68.
Dixit, P., Mukherjee, P. K., Ramachandran, V. and Eapen, S. (2011). Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. Plos One. 6(1): 1-15.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28(3): 350-356
Emamverdian, A., Ding, Y., Xie, Y. and Sangari, S. (2018). Silicon mechanisms to ameliorate heavy metal stress in plants. BioMed Research International. 2018: 1-10.
Farooq, M. A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K. and Iqbal, Z. (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety. 96: 242-249.
Farooq, M. A., Detterbeck, A., Clemens, S. and Dietz, K. J. (2016). Silicon-induced reversibility of cadmium toxicity in rice. Journal of Experimental Botany. 67(11): 3573-3585.
Feng, J., Shi, Q., Wang, X., Wei, M., Yang, F. and Xu, H. (2010). Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae. 123(4): 521-530.
Ghafiyehsanj, E., Dilmaghani, K. and Hekmat Shoar, H. (2013). The effects of salicylic acid on some of biochemical characteristics of wheat (Triticum aestivum L.) under salinity stress. Annals of Biological Research. 4(6): 242-248.
Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V. and Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology. 16: 1807-1828.
Guntzer, F., Keller, C. and Meunier, J. D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development. 32: 201-213.
Hassanein, R. A., Hashem, H. A. and Khalil, R. R. (2012). Stigmasterol treatment increases salt stress tolerance of faba bean plants by enhancing antioxidant systems. Plant Osmics. 5(5): 476-485.
Hasanuzzaman, M., Nahar, K., Anee, T. I. and Fujita, M. (2017). Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Frontiers in Plant Science. 8:1-9.
Huang, F., Wen, X. H., Cai, Y. X. and Cai, K. Z. (2018). Silicon-mediated enhancement of heavy metal tolerance in rice at different growth stages. International Journal of Environmental Research and Public Health. 15 (10):1-16.
Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, M., Shahzad, S. M., Yousaf, B. and Tu, S. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. Journal of Environmental Management. 183: 521-529.
Kabir, A. H., Hossain, M. M., Khatun, M. A., Mandal, A. and Haider, S. A. (2016). Role of silicon counteracting cadmium toxicity in alfalfa (Medicago sativa L.). Frontiers in Plant Science. 7:1-12.
Karimi, N., Ghaderian, S. M., Raab, A., Feldmann, J. and Meharg, A. A. (2009). An arsenic accumulating, hyper-tolerant brassica, Isatis cappadocica Desv. New Phytologist. 184: 41–47.
Karimi, N. and Souri, Z. (2015). Effect of phosphorus on arsenic accumulation and detoxification in arsenic hyperaccumulator, Isatis cappadocica. Journal of Plant Growth Regulation. 34: 88-95.
Kauss, H., Seehaus, K., Franke, R., Gilbert, S., Dietrich, R. A. and Kröger, N. (2003). Silica deposition by a strongly cationic proline rich protein from systemically resistant cucumber plants. The Plant Journal. 33(1): 87-95.
Khan, E., Panthri, M., Pandey, C., Sahay, S. and Gupta, M. (2023). Silicon modulates expression of PIN genes and genotoxicity during arsenic stress in rice (Oryza sativa). Journal of Soil Science and Plant Nutrition. 23: 1660–1677.
Li, L., Zheng, C., Fu, Y., Wu, D., Yang, X. and Shen, H. (2012). Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Biological Trace Element Research. 145: 101–108.
Liu, J., Zhang, H., Zhang, Y. and Chai, T. (2013). Silicon attenuates cadmium toxicity in Solanu nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiology and Biochemistry. 68: 1-7.
Ma, J. F. and Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular life Sciences. 65: 3049-3057.
Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P. and Zhao, F. J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences. 105(29): 9931-9935.
Mateos-Naranjo, E., Galle, A., Florez-Sarasa, I., Perdomo, J. A., Galmes, J., Ribas-Carbo, M. and Flexas, J. (2015.( Assessment of the role of silicon in the Cu-tolerance of the C4 grass Spartina densiflora. Journal of Plant Physiology. 178: 74–83.
Meharg, A. A. and Jardine, L. (2003). Arsenite transport in to paddy rice (Oryza sativa) roots. New Phytologist. 157(1): 39-44.
Pandey, C., Khan, E., Panthri, M., Tripathi, R. D. and Gupta, M. (2016). Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters. cellular antioxidants and stress modulators under arsenic stress. Plant Physiology and Biochemistry. 104: 216-225.
Saleem, M. H., Mfarrej, M. F. B., Alatawi, A., Mumtaz, S., Imran, M., Ashraf, M. A., Rizwan, M., Usman, K., Ahmad, P. and Ali, S. (2023) Silicon enhances morpho–physio–biochemical responses in arsenic stressed spinach (Spinacia oleracea L.) by minimizing its uptake. Journal of Plant Growth Regulation. 42(3): 2053-2072.
Sanglard, L., Martins, S. C., Detmann, K. C., Silva, P. E., Lavinsky, A. O., Silva, M. M., Detmann, E., Araujo, W. L. and DaMatta, F. M. (2014). Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiologia Plantarum. 152(2): 355-366
Sergiev, I., Alexieva, V. and Karanov, E. (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Proceedings of the Bulgarian Academy of Sciences. 51(3): 121-124.
Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir, M. and Suleman Khan, M. (2013). Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry. 2013:1-5.
Shao, J. F, Che, J., Yamaji, N., Shen, R. F. And Ma, J. F. (2017). Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. Journal of Experimental Botany. 68(20):5641-5651.
Shi, G., Cai, Q., Liu, C. and Wu, L. (2010). Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation. 61: 45-52.
Souri, Z., Karimi, N., Farooq, M. A. and Sandalio, L, M. (2020). Nitric oxide improves tolerance to arsenic stress in Isatis cappadocica Desv. Shoots by enhancing antioxidant defenses. Chemosphere. 239: 124523.
Souri, Z., Karimi, N. and Sandalio, L. M. (2017). Arsenic hyperaccumulation strategies: an overview. Frontiers in Cell and Developmental Biology. 5:1-8.
Souri, Z., Khanna, K., Karimi, N. and Ahmad, P. (2021). Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation. 40: 906-925.
Stone, J. R. and Yang, S. (2006). Hydrogen peroxide: a signaling messenger. Antioxidants & Redox Signaling. 8(3-4): 243-270.
Tripathi, P., Tripathi, R. D., Pratap, S. R., Dwivedi, S., Goutam, D., Shri, M., Trivedi, P. K. and Chakrabarty, D. (2013). Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecological Engineering. 52: 96–103.
Vaculík, M., Lux, A., Luxová, M., Tanimoto, E. and Lichtscheidl, I. (2009). Silicon mitigates cadmium inhibitory effects in young maize plants. Environmental and Experimental Botany. 67(1): 52-58.
Vatehova, Z., Kollarová, K., Zelko, I., Richterova-Kucerova, D., Bujdos, M. and Liskova, D. (2012). Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia. 67: 498-504.
Verma, S. and Dubey, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia Plantarum. 44: 117-123.
Wu, J., Mock, H. P., Giehl, R. F., Pitann, B. and Mühling, K. H. (2019). Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. Journal of Hazardous Materials. 364: 581-590.
Zhao, F. Y., Liu, W. and Zhang, S. Y. (2009). Different responses of plant growth and antioxidant system to combination of cadmium and heat stress in transgenic and non-transgenic rice. Journal of Integrative Plant Biology. 51(10): 942-950.