Enhancement of salt tolerance in black bean variety (Phaseolus vulgaris L.) by silicon nutrition
Subject Areas : Plant PhysiologyFatemeh Heidarian 1 , Parto Roshandel 2
1 - Agronomy Dept., Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
2 - Agronomy Dept., Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
Keywords: Electrolyte leakage, Photosynthetic pigments, Salt stress, Legumes, cellular water status,
Abstract :
In order to study the effect of silicon nutrition to increase salt tolerance in black bean variety of Phaseolus vulgaris, 12-day-old seedlings were treated with NaCl (0 and 50 mM) and NaCl (50 mM) + silicon (0.5 or 3 mM) in the green house for four weeks. The analyzed parameters were fresh and dry weights, total chlorophyll and free proline concentrations, relative water content (RWC) and electrolyte leakage in the leaves, and the concentrations of Na+ and K+ in the shoots and roots. Salt stress decreased the values of fresh (39.3%) and dry weight (48.4%), total chlorophyll (20.9%), K+ (60.6% in the roots; 20.3% in the shoots) and RWC (50%). Moreover, the level of free proline (19%), electrolyte leakage (2.4 folds) and Na+ concentration (4.6 folds in the shoots; 3.8 folds in the roots) significantly increased. However, silicon (particularly at 3 mM) ameliorated the deleterious effects of NaCl. At this case and compared to exclusively salt stress, the fresh and dry weights were increased by 20.3 and 66%. Also, the content of total chlorophyll (21%), RWC (83%) and K+ (21% in the shoots, 90% in the roots) augmented, but electrolyte leakage (38%) and the content of Na+ decreased (39.7% in the shoots, 27.8% in the roots). Generally, current data suggested silicon enhanced salt tolerance in black bean plants by reducing the entrance of Na+ and maintaining the level of K+ in the salinized tissues. Besides, it improved the water status, membrane integrity and function of photosynthetic machinery under salinity.
Ahmad, R., S. Zaheer, S. Ismail, 1992. 'Role of silicon in salt tolerance of wheat (Triticum aestivum)'. Plant Science, 85:43-50.
Ahmed, M., U. Qadeer, Z. Ahmed, F. Hassan, 2016. 'Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon'. Archives of Agronomy and Soil Science,62:299-315.
Ali, S., M. Farooq, T. Yasmeen, S. Hussain, M. Arif, F. Abbas, ..., G. Zhang, 2013. 'The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress'. Ecotoxicology and Environmental Safety, 89:66-72.
Ashraf, M., A. Rahmatullah, A. Bhatti, M. Afzal, A. Sarwar, M. Maqsood, S. Kanwal, 2010. 'Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics'. Pedosphere, 20:153-162.
Aparicio-Fernández, X., T. García-Gasca, G.G. Yousef, M.A. Lila, E.G. De Mejia, and G. Loarca-Pina, 2006. Chemopreventive activity of polyphenolics from black Jamapa bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. Journal of Agriculture and Food Chemistry, 54:2116-2122.
Aparicio-Fernández, X., R. Reynoso-Camacho, E. Castaño-Tostado, T. García-Gasca, E.G. de Mejia, H. Guzmán-Maldonado, G. Elizondo, G.G. Yousef, M.A. Lila, and G. Loarca-Pina, 2008. 'Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract'. Plant Food Human Nutrition, 63:35-40.
Arts, I. C. W., and P.C.H. Hollman, 2005. 'Polyphenols and disease risk in epidemiologic studies'. American Journal of Clinical Nutrition, 81:317S-325S.
Bates, L.S., R.P. Waldren and I.D. Teare, 1973. 'Rapid determination of free proline for water-stress studies'. Plant and Soil, 39:205-207.
Bélanger, R., N. Benhamou, J.G. Menzies, 2003. 'Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici)'. Phytopathology, 93:402-412.
Blumwald, E. 2000. 'Sodium transport and salt tolerance in plants'. Current Opinion in Cell Biology, 12:431-434.
Ciulca, S., and C. Lugojan, 2011. 'Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology, 15(2):173-177.
Coskun, D., D.T. Britto, W.Q. Huynh, and H.J. Kronzucker, 2016. 'The role of silicon in higher plants under salinity and drought stress'. Frontiers in Plant Sciences, 7:1072.
Côté-Beaulieu, C., F. Chain, J.G. Menzies, S. D. Kinrade, R. R. Bélanger, 2009. 'Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on growth and powdery mildew control'. Environmental and Experimental of Botany, 65:155-161.
Dong, M., X. He, and R.H. Liu, 2007. 'Phytochemicals of black bean seed coats: isolation, structure elucidation, and their antiproliferative and antioxidative activities'. Journal of Agricultural and Food Chemistry, 55(15):6044-6051.
Gill, S.S., and N. Tuteja, 2010. 'Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants'. Plant Physiology and Biochemistry, 48:909-930.
Gong, H.J., D. P. Randall, and T.J. Flowers, 2006. 'Silicon deposition in the root reduces sodium uptake in rice seedlings by reducing bypass flow'. Plant, Cell and Environment, 29:1970-1979.
Guajardo‐Flores, D., D. Serna‐Guerrero, S.O. Serna‐Saldívar, and D. A. Jacobo‐Velázquez, 2014. 'Effect of Germination and UV‐C Radiation on the Accumulation of Flavonoids and Saponins in Black Bean Seed Coats'. Cereal Chemistry, 91(3):276-279.
Guerriero, G., J. F. Hausman, and S. Legay, 2016. 'Silicon and the plant extracellular matrix'. Frontiers in Plant Sciences, 7:463.
Hashemi, A., A. Abdolzadeh, H. R. Sadeghipour, 2010. 'Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants'. Journal of Soil Science and Plant Nutrition, 56:244-253.
He, C., J. Ma, and L. Wang, 2015. 'A hemicelluloses-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice'. New Phytologist, 206:1051-1062.
Hodson, M. J., P. J. White, A. Mead, M. R. Broadley, 2005. 'Phylogenetic variation in the silicon composition of plants'. Annals of Botany, 96:1027-1046.
Kafi, M., and Z. Rahimi, 2011. 'Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.)'. Journal of Soil Science and Plant Nutrition, 5:341-347.
Keller, C., M. Rizwan, J. C. Davidian, O. S. Pokrovsky, N. Bovet, P. Chaurand, J. D. Meunier, 2015. 'Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu'. Planta, 241:847-860.
Kim, Y. H., A. L. Khan, M. Waqas, I. J. Lee, 2017. 'Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review'. Frontiers in Plant Sciences, 8:510.
Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon, and I. J. Lee, 2010. 'Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system'. Agroforestry
Systems, 80:333-340.
Liang, Y., M. Nikolic, R. Bélanger, H. Gong, and A. Song, 2015. 'Silicon in agriculture'. Dordrecht: Springer. Doi 10, 978-94.
Liang, Y. C., Q. Chen, Q. Liu, W. H. Zhang, and R. X. Ding, 2003. 'Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.) '. Journal of Plant Physiology, 160:1157-1164.
Liang, Y. C., W. H. Zhang, Q. Chen, and R. X. Ding, 2005. 'Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.)'. Environmental and Experiments of Botany, 53:29-37.
Lichtenthaler, H. K. and C. Buschmann, 2001. 'Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy'. In: Current protocols in food analytical chemistry, F4.3.1-F4.3.8. John Wiley and Sons, Inc. New York.
Lutts, S., J. M. Kinet, and J. Bouharmont, 1996. 'NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance'. Annals of Botany, 78:389-398.
Mateos-Naranjo, E., L. Andrades-Moreno, and A. J. Davy, 2013. 'Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora'. Plant Physiology and Biochemistry, 63:115-121.
Mojica, L., A. Meyer, M. A. Berhow, and E. G. de Mejía, 2015. 'Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration'. Food Research International, 69:38-48.
Matoh, T., P. Kairusmee, and E. Takahashi, 1986. 'Salt-induced damage to rice plants and alleviation effect of silicate'. Soil Science and Plant Nutrition, 32:259-304.
Moussa, H.R. 2006. 'Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.)'. International Journal of Agriculture and Biology, 8:293-297.
Munns, R., S. Husain, A. R. Rivelli, R. James, A. G. Condon, M. Lindsay, E. Lagudah, D. Shachtman, and R. Hare, 2002. 'Avenues for increasing salt tolerance of crops and the role of physiologically-based selection traits'. Plant and Soil, 247:93-105.
Munns, R., and M. Tester, 2008. 'Mechanisms of salinity tolerance'. Annual Review of Plant Biology, 59:651-681.
Neuman, D., and C. De Figueiredo, 2002. 'A novel mechanism of silicon uptake'. Protoplasma, 220:59-67.
Nosrati, H. and P. Roshandel, 2018. 'Silicon-mediated alleviation of salt stress in pinto and green bean varieties (Phaseolus vulgaris L.)'. JAB, 31(3): 124-139.
Richmond, K. E. and M. Sussman, 2003. 'Got Silicon? The non-essential beneficial plant nutrition'. Current Opinion in Plant Biology, 6:268-272.
Rizwan, M., S. Ali, M. Ibrahim, M. Farid, M. Adrees, S. A. Bharwana, SA, ..., and F. Abbas, 2015. 'Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review'. Environmental
Science and Pollution Research, 22:15416-15431.
Robatjazi, R., P. Roshandel, H. Hooshmand, 2020. 'Benefits of Silicon Nutrition on Growth, Physiological and Phytochemical Attributes of Ocimum basilicum L. var. green upon Salinity Stress'. International Journal of Horticultural Science and Technology, 7:37-50.
Romero-Aranda, M. R., and J. Jurado O, Cuartero, 2006. 'Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status'. Journal of Plant Physiology, 163:847-855.
Shahzad, M., C. Zörb, C. M. Geilfus, and K. H. Mühling, 2013. 'Apoplastic Na+ in Vicia faba leaves rises after short-term salt stress and is remedied by silicon'. Journal of Agronomy and Crop Science, 199:161-170.
Shi, Y., Y. C. Wang, T. J. Flowers, and H. J. Gong, 2013. 'Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions'. Journal of Plant Physiology, 170:847-853.
Sommer, M., D. Kaczorek, Y. Kuzyakov, and J. Breuer, 2006. 'Silicon pools and fluxes in soils and landscapes- a review'. Journal of Plant Nutrition and Soil Science, 169:310-329.
|
Sonobe, K., T. Hattori, P. An, W. Tsuji, A. E. Eneji, S. Kobayashi,, ..., S. Inanaga, 2010. 'Effect of silicon application on sorghum root responses to water stress'. Journal of Plant Nutrition, 34:71-82.
Tuna, A. L., C. Kaya, D. Higgs, B. Murillo-Amador, S. Aydemir, and A. R. Girgin, 2008. 'Silicon improves salinity tolerance in wheat plants'. Environmental and Experimental of Botany, 62:10-16.
Wang, X. S., and J. G. Han, 2007. 'Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance'. Soil Science and Plant Nutrition, 53:278-285.
Yeo, A. R., S. A. Flowers, G. Rao, K. Welfare, N. Senanayake and T.J. Flowers, 1999. 'Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow'. Plant Cell Environment, 22:565-559.
Yin, L., S. Wang, P. Liu, W. Wang, D. Cao, X. Deng, and S. Zhang, 2014. 'Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. ' Plant Physiology and Biochemistry, 80:268-277.
Zhu, Y. and H. J. Gong, 2014. 'Beneficial effects of silicon on salt and drought tolerance in plants'. Agronomy for Sustainable Development, 34:455-472.
Zhu, Z. J., G. Q. Wei, J. Li, Q. Q. Qian, and J. P. Yu, 2004. 'Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.)'. Plant Science, 167:527-533.
Zuccarini, P. 2008. 'Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress'. Biologia Plantarum, 52(1):157-160.