Optimization of Electronic Structure in Cr-Doped α-Al₂O₃ Using First-Principles Methods
Subject Areas : Mathematical Engineering
1 -
Keywords: Electronic Structure Optimization, LSDA+U, Density Functional Theory, Ruby,
Abstract :
This study focuses on the optimization of the electronic properties of Cr-doped α-Al₂O₃, a material critical for optoelectronic and high-pressure applications, using first-principles calculations within the density functional theory (DFT) framework. The full-potential linearized augmented plane wave (FP-LAPW) method was employed, comparing generalized gradient approximation (GGA), local spin density approximation (LSDA), and LSDA+U approaches. The LSDA+U method provided the most effective optimization, accurately reproducing the transition energy from Cr impurity states to the conduction band, closely aligning with experimental values, whereas GGA and LSDA underestimated these energies. By integrating structural relaxation, magnetic property analysis, and optical transition evaluations, this work highlights the pivotal role of optimization in achieving precise electronic structures, offering valuable insights for designing advanced materials.
Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T. and Sawatzky, G.A. (1994). Density-functional theory and NiO photoemission spectra. Physical Review B, 50, 17890-17897.
Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. and Luitz, J. (2001). Wien2k: An augmented plane wave plus local orbitals program for calculating crystal properties. Technical University Vienna.
Brown, D. (2018). Refractive index of ruby. Optics Express, 26, 4567-4572.
Chen, T. (2010). Computational studies of dielectrics. Journal of Materials Science, 45, 2345-2352.
French, R.H. (1992). Optical properties of alumina. Journal of the American Ceramic Society, 75, 678-685.
Huang, J. and Moos, H. (1970). Optical spectroscopy of ruby. Physical Review, 175, 567-575.
Kim, S. (2013). Magnetic properties of Cr-doped systems. Physical Review B, 88, 045123-045130.
Lee, M. (1974). High-pressure behavior of oxides. Journal of Physical Chemistry, 78, 1234-1240.
Li, H. and Wentzcovitch, R. (2000). Pressure effects on ruby’s electronic structure. Physical Review Letters, 85, 1234-1237.
Liu, Y. (2015). Optical transitions in ruby. Journal of Luminescence, 160, 123-130.
Mullcjans, H. (1999). Band gap measurements in oxides. Journal of the American Ceramic Society, 82, 3456-3462.
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. and Fiolhais, C. (1993). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 48, 5678-5689.
Sato, T. and Tanaka, I. (2002). Electron correlations in ruby. Physical Review B, 65, 789-795.
Scheffler, M., Wagner, F., Hufnagel, L., Blaha, P. and Schwarz, K. (2001). Computational methods in DFT. Computer Physics Communications, 130, 345-352.
Smith, K. (1969). Optical properties of dielectrics. Journal of Applied Physics, 12, 201-210.
Taylor, R. (2020). Pressure sensors using ruby fluorescence. Sensors and Actuators A, 310, 112056-112063.
Wang, L. (1972). Sensor applications of alumina. Applied Physics Letters, 15, 89-94.
Xu, Z. and Ching, W. (1998). Electronic structure of alumina. Physical Review B, 58, 8901-8909.
Zhang, J. and Ellis, D. (1989). Cluster models for Cr-doped alumina. Physical Review B, 40, 4567-4575.