Developing a Novel Neural Network Method for Solving Variable-Order Fractional Partial Differential Equations with Time-Varying Delay
Subject Areas : Numerical Analysis
hamideh ebrahimi
1
*
,
Farahnaz Golpour Lasaki
2
,
Mousa Ilie
3
1 - Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Department of Mathematics, Rasht Branch, Islamic Azad University,
3 - Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords: Functional link neural network, Lagrange polynomials, Variable-order fractional operators, Time-varying delay,
Abstract :
This paper presents a novel functional link neural network for solving a class of variable-order fractional partial differential equations with time-varying delay. Due to the proficiency of Lagrange polynomials in numerical approximations for fractional calculus, these polynomials serve as the foundational neuro-solutions within the neural network. Finding the right activation functions is essential for effective learning in artificial neural networks, particularly when solving variable-order fractional derivatives and time-varying delays. To reduce the computational complexity of the proposed neural network, a linear activation function is used. Numerical simulations are carried out to demonstrate the capability of the proposed method. The neural network undergoes training using a modified Newton-Raphson method instead of the traditional learning techniques. The study’s findings indicate that the suggested functional link neural network achieves greater accuracy in comparison to some traditional methods for solving fractional partial differential equations.
[1] S. Chávez-Vázquez, J. F. Gómez-Aguilar, J. E. Lavín-Delgado, R. F. Escobar-Jiménez, and V. H. Olivares-Peregrino, Applications of Fractional Operators in Robotics: A Review, Journal of Intelligent & Robotic Systems, vol. 104, no. 63, 2022. DOI: 10.1007/s10846-022-01597-1.
[2] K. Diethelm, V. Kiryakova, Y. Luchko, J.A.T. Machado, and V.E. Tarasov, Trends, directions for further research, and some open problems of fractional calculus, Nonlinear Dynamics, vol. 107, pp. 3245-3270, 2022.
[3] S. Patnaik, J.P. Hollkamp, and F. Semperlotti, Applications of variable-order fractional operators: a review, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 476, 2020. DOI: 10.1098/rspa.2019.0498.
[4] C. Zúniga-Aguilar, J. Gómez-Aguilar, R. Escobar Jiménez, and H. Romero Ugalde, A novel method to solve variable-order fractional delay differential equations based in Lagrange interpolations, vol. 126, pp. 266-282, 2019. DOI:10.1016/j.chaos.2019.06.009.
[5] L. K. Bijiga and W. Ibrahim, Neural network method for solving time-fractional telegraph equation, Mathematical Problems in Engineering, vol. 2021, 2021.
DOI:10.1155/2021/7167801.23
[6] S. Al-Janabi, A. Alkaim, and Z. Adil, An innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy, Methodologies and Application, vol. 24, 2020. DOI:10.1007/s00500-020-04905-9.
[7] S. Al-Janabi, M. Mohammad, and A. Al-Sultan, A new method for prediction of air pollution based on intelligent computation, Soft Computing, vol. 24, 2020. DOI:10.1007/s00500-019-04495-1.
[8] S. Al-Janabi and A. Alkaim, A nifty collaborative analysis to predicting a novel tool (drflls) for missing values estimation, Soft Computing, vol. 24, 2020. DOI:10.1007/s00500-019-03972-x.
[9] Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Longman Publishing Co., Inc., USA, ISBN-13: 978-0201125849, 1989. ISBN-13: 978-0201125849
[10] A.-M. Zou, K. Dev Kumar, and Z.-G. Hou, Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks, IEEE Transactions on Neural Networks, vol. 21, pp. 1457-1471, 2010. DOI:10.1109/TNN.2010.2050333.
[11] L. E. Peterson, K. V. Larin, Hermite/laguerre neural networks for classification of artificial fingerprints from optical coherence tomography, in: 2008 Seventh International Conference on Machine Learning and Applications, pp. 637-643, 2008. DOI:10.1109/ICMLA.2008.36.
[12] J. C. Patra, W. C. Chin, P. K. Meher, and G. Chakraborty, Legendre-flann-based nonlinear channel equalization in wireless communication system, in: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 1826–1831, 2008. DOI:10.1109/ICSMC.2008. 4811554.
[13] Ghada S. Mohammed, and Samaher Al-Janabi, An innovative synthesis of optimization techniques (fdire-gsk) for generation electrical renewable energy from natural resources, vol.16, 2020. DOI:10.1016/j.rineng.2022.100637.
[14] Zena A. Kadhuim, and Samaher Al-Janabi, Codon-mrna prediction using deep optimal neurocomputing technique (dlstm-dsn-woa) and multivariate analysis, Results in Engineering, vol. 17, 2023. DOI:10.1016/j.rineng.2022.100847.
[15] Rahmad Syah, John William Grimaldo Guerrero, Andrey Leonidovich Poltarykhin, Wanich Suksatan, Surendar Aravindhan, Dmitry O. Bokov, Walid Kamal Abdelbasset, Samaher Al-Janabi i, Ayad F. Alkaim I, and Dmitriy Yu. Tumanov, Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell, Energy Reports, vol. 8, pp. 10776-10785, 2022. DOI:10.1016/j.egyr.2022.08.177.
[16] A. Akgül, M. Inc and D. Baleanu, On solutions of variable-order fractional differential equations, An International Journal of Optimization and Control Theories & Applications (IJOCTA), vol. 7, 2017. DOI:10.11121/ijocta.01.2017.00368.
[17] S. Haykin, Neural Networks: A Comprehensive Foundation, Pearson, ISBN-13 :978-0132733502, 2nd edition, 1998.
[18] T. Chen, H. Chen, and R.w. Liu, Approximation capability in by multilayer feedforward networks and related problems, IEEE Transactions on Neural Networks, vol. 6, pp. 25-30, 1995. DOI:10.1109/72.363453.
[19] R. Ghazali, A. J. Hussain, D. Al-Jumeily, and P. Lisboa, Time series prediction using
dynamic ridge polynomial neural networks, in: 2009 second international conference on developments in Esystems Engineering, IEEE, pp. 354-363, 2009. DOI: 10.1109/DeSE.2009.35.
[20] P. Kumar and V.S. Erturk, The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative, Mathematical Methods in the Applied Sciences, vol. 46, no. 7, 2022. DOI: 10.1002/mma.6935.
[21] Khalid Hattaf, On the Stability and Numerical Scheme of Fractional Differential Equations with Application to Biology, Computation, vol. 10, no. 6, 2022. DOI: 10.3390/computation10060097.
[22] H. Sheng, H. Sun, Y.Q. Chen, T.Sh. Qiu, Synthesis of multifractional Gaussian noises based on variable-order fractional operators, Signal Processing, vo. 91, no. 7, pp. 1645-1650, 2011. DOI:10.1016/j.sigpro.2011.01.010.
[23] A.K. Singh, M. Mehra, S. Gulyani, A modified variable-order fractional SIR model to predict the spread of COVID-19 in India, Mathematical Methods in Applied Science, vol. 46, no. 7, 2021. DOI: 10.1002/mma.7655.
[24] B.P. Moghaddam and J.T. Machado, A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations, Computer & Mathematics with Applications, vol. 73, no. 6, pp.1262-1269, 2017. DOI: 10.1016/j.camwa.2016.07.010.
[25] A. Tayebi, Y. Shekari, and M.H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, Journal of Computational Physics, vol. 340, pp. 655-669, 2017. DOI: 10.1016/j.jcp.2017.03.061.
[26] M.H. Heydari and Z. Avazzadeh, Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos, Solitons & Fractals, vol. 112 pp. 180-190, 2018. DOI: 10.1016/j.chaos.2018.04.028.
[27] R. Choudhary, S. Singh, and D. Kumar, A second-order numerical scheme for the timefractional partial differential equations with a time delay, Computational and Applied Mathematics, vol. 41, no. 114, 2022. DOI: 10.1007/s40314-022-01810-9.
[28] S. Hosseinpour, A. Nazemi, and E. Tohidi, A new approach for solving a class of delay fractional partial differential equations, Mediterranean Journal of Mathematics, vol. 15, pp. 1-20, 2018. DOI: 10.1007/s00009-018-1264-z.
[29] C. Canuto, M. Y. Hussaini, A. Quarteroni, and A. Thomas Jr, et al., Spectral methods in fluid dynamics, Springer Science & Business Media, 2012. ISBN: 978-3-642-84108-8
[30] F. Kheyrinataj and A. Nazemi, Fractional Chebyshev functional link neural network‐optimization method for solving delay fractional optimal control problems with Atangana‐Baleanu derivative, Optimal Control Applications and Methods, vol. 41, 2020. DOI:10.1002/oca.2572.
[31] F. Kheyrinataj and A. Nazemi, Fractional power series neural network for solving delay fractional optimal control problems, Connection Science, vol. 32, pp. 1-28, 2019. DOI:10.1080/09540091.2019.1605498.
[32] A. Dabiri, B.P. Moghaddam, and J.A. Tenreiro Machado, Optimal variable-order fractional pid controllers for dynamical systems, Journal of Computational and Applied Mathematics, vol. 339, pp. 40-48, 2018. DOI:10.1016/j.cam.2018.02.029.
[33] H. Susanto and N. Karjanto, Newtons method basin of attraction revisited, Applied Mathematics and Computation, vol. 215, pp. 1084-1090, 2009. DOI:10.1016/j.amc.2009.06.041.
[34] F. Golpour Lasaki, H. Ebrahimi, and M. Ilie, A novel Lagrange functional link neural network for solving variable-order fractional time-varying delay differential equations: a comparison with multilayer perceptron neural networks, Soft Computing, vol. 27, 2023, 12595-12608. DOI: 10.1007/s00500-023-08494-1.
[35] H. Dehestani, Y. Ordokhani, M. Razzaghi, On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay, Numerical Linear Algebra with Applications, 2019, DOI: 10.1002/nla.2259.