Norm and Numerical Radius Inequalities for Hilbert Space Operators
Subject Areas : International Journal of Mathematical Modelling & ComputationsMohsen Omidvar 1 * , Mahdi Ghasvareh 2
1 - Department of Mathematics, Mashhad Branch, Islamic Azad University
2 - Department of Mathematics, Mashhad Branch, Islamic Azad University
Keywords: Inequality, numerical radius, operator norm, Bounded linear operators,
Abstract :
In this paper, we present several numerical radius and norm inequalities for sum of Hilbert space operators. These inequalities improve some earlier related inequalities. For $A,B\in B\left( H \right)$, we prove that\[\omega \left( {{B}^{*}}A \right)\le \sqrt{\frac{1}{2}{{\left\| A \right\|}^{2}}{{\left\| B \right\|}^{2}}+\frac{1}{2}\omega \left( {{\left| B \right|}^{2}}{{\left| A \right|}^{2}} \right)}\le 4\omega \left( A \right)\omega \left( B \right).\]
[1] J. S. Aujla and F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra
Appl., 369 (2003) 217–233.
[2] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ.
Politech. Torino., 31 (1971/73) (1974) 405–409, in Italian.
[3] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert
spaces, Sarajevo J. Math., 5 (18) (2009) 269–278.
[4] S. S. Dragomir, Some Gruss type inequalities in inner product spaces, J. Inequal. Pure & Appl.
Math., 4 (2) (2003), Article 42.
[5] S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert
spaces, Tamkang J. Math., 39 (1) (2008) 1–7.
[6] S. S. Dragomir, A note on numerical radius and the Krein-Lin inequality, Mathematica, 60 (83)
(2018) 149–151.
[7] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia
Math., 182 (2) (2007) 133–140.
[8] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd edition, Cambridge University Press,
Cambridge, (1988).
[9] F. Kittaneh and H. R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical
radius inequalities, Math. Inequal. Appl., 23 (3) (2020) 1117–1125.
[10] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24
(2) (1988) 283–293.
M. E. Omidvar and M. Ghasvareh/ IJM2C, 12 - 03 (2022) 173-181. 181
[11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005)
73–80.
[12] H. R. Moradi and M. Sababheh, New estimates for the numerical radius, Filomat, 35 (14) (2020)
4957–4962.
[13] M. E. Omidvar and H. R. Moradi, Better bounds on the numerical radii of Hilbert space operators,
Linear Algebra Appl., 604 (2020) 265–277.
[14] M. E. Omidvar and H. R. Moradi, New estimates for the numerical radius of Hilbert space operators,
Linear Multilinear Algebra, 69 (5) (2021) 946–956.
[15] M. Sattari, M. S. Moslehian and T. Yamazaki, Some generalized numerical radius inequalities for
Hilbert space operators, Linear Algebra Appl., 470 (2015) 216–227