Observers and Relative Entropy Functional
Subject Areas : International Journal of Industrial Mathematicsعادل گروهی 1 , یوسف محمدی 2 , محمد ابراهیمی 3
1 - Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran.
2 - Department of Mathematics, University of Jiroft, Jiroft, Iran.
3 - Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran.
Keywords: Relative entropy functional, Kolmogorov entropy, Invariant, Relative dynamical system,
Abstract :
In this paper, we will use the mathematical modeling of one-dimensional observers to present the notion of the \emph{relative entropy functional} for relative dynamical systems. Also, the invariance of the entropy of a system under topological conjugacy is generalized to the relative entropy functional. Moreover, from observer viewpoint, a new version of the Jacobs Theorem is obtained. It has been proved that relative entropy functional is equivalent to the Kolmogorov entropy for dynamical systems, from the viewpoint of observer $ \chi_X $, where $ \chi_X $ is the characteristic function on compact metric space $X$.
[1] A. N. Kolmogorov, New metric invariants of transitive dynamical systems and automorphisms of Lebesgue spaces,Dokl. Nauk. S.S.S.R, 119 (1958) 861-864.
[2] U. Mohammadi, Observational modeling of the Kolmogorov-Sinai Entropy, Sahand Communications in Mathematical Analysis 13 (2019) 101-114.
[3] M. R. Molaei, Observational modeling of topological spaces, Choas, Solitons and Fractals 42 (2009) 615-619.
[4] M. R. Molaei and B. Ghazanfari, Relative probability measures, Fuzzy sets, Rough Sets and Mutivalued Operations and Applications 1 (2008) 89-97.
[5] M. R. Molaei, Relative semi-dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 12 (2004) 237-243.
[6] M. R. Molaei, The concept of synchronization from the observer viewpoint, Cankaya University Journal of Science and Engineering 8 (2011) 255-262.
[7] M. R. Molaei, M. H. Anvari, T. Haqiri, On relative semi-dynamical systems, Intelligent Automation and Soft Computing Systems 12 (2004) 237-243.
[8] R. Phelps, Lectures on Choquet’s Theorem, D. Van Nostrand Co., Inc., Princeton, N. J. Toronto, Ont. London, 1966.
[9] M. Rahimi, A. Riazi, Entropy functional for continuous systems of finite entropy, Acta Mathematica Scientia (2012) 775-782.
[10] Ya. Sinai, On the notion of entropy of a dynamical system, Dokl. Akad. Nauk. S.S.S.R, 125 (1959) 768-771.
[11] P. Walters, An Introduction to Ergodic Theory,Springer Verlag, 1982.
[12] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.