Pseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
Subject Areas : International Journal of Industrial Mathematicsسعید غلامی 1 , اسماعیل بابلیان 2 * , محمد جاویدی 3
1 - Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Faculty of Mathematical Sciences and Computer, Kharazmy University, Tehran, Iran.
3 - Department of Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
Keywords: Fractional Fokker-Planck Equation, Pseudo-Spectral Integration Matrix, Grunwald-Letnikov Derivative, Gauss-Lobatto Points,
Abstract :
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
[1] E. Babolian, S. Gholami, M. Javidi, A Numerical Solution for One-dimensional Parabolic Equation Based On PseudoSpectral Integration Matrix, Applied and Computational Mathematics 13 (2014) 306-315.
[2] E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Physical Review E 61 (2000) 132-138.
[3] A. Chechkin, V. Gonchar, M. Szyd lowsky, Fractional kinetics for relaxation and superdiffusion in magnetic field, Physics of Plasmas 9 (2002) 78-88.
[4] S. Chen, F. Liu, P. Zhuang, V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Applied Mathematical Modelling 33 (2009) 256-273.
[5] C. W. Clenshaw, The numerical solution of linear differential equations in Chebushev series, Proceedings of the Cambridge Philosophical Society 53 (1957) 134-149.
[6] S. Das, K. Vishal, P. K. Gupta, A. Yildirim, An approximate analytical solution of timefractional telegraph equation, Applied Mathematics and Computation 217 (2011) 7405-7411.
[7] W. H. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics 227 (2007) 1510-1522.
[8] W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM Journal on Numerical Analysis 47 (2008) 204-226.
[9] Elsayed, M. E. Elbarbary, Pseudo-spectral integration matrix and boundary value problems, International Journal of Computer Mathematics 84 (2007) 1851-1861.
[10] S. E. El-Gendi, Chebyshev solution of differential, integral, and integro-differential equations, Computer Journal 12 (1969) 282-287.
[11] S. E. El-Gendi, H. Nasr,H. M. El-Hawary, Numerical solution of Poisson’s equation by expansion in Chebyshev polynomials, Bulletin of the Calcutta Mathematics Society 84 (1992) 443-449.
[12] V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numerical Methods for Partial Differential Equations 22 (2005) 558-576.
[13] V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in rd, Numerical Methods for Partial Differential Equations 23 (2006) 256-281.
[14] R. Friedrich, Statistics of Lagrangian velocities in turbulent flows, Physical Review Letters 90 (2003) Article 084501.
[15] S. Gholami, A Numerical Solution for One-dimensional Parabolic Equation Using Pseudo-spectral Integration Matrix and FDM, Research Journal of Applied Sciences, Engineering and Technology 7 (2014) 801-806.
[16] S. Gholami, E. Babolian, M. Javidi, PseudoSpectral operational matrix for numerical solution of single and multi-term time fractional diffusion equation, Turkish Journal of Mathematics 40 (2016) 1118-1133.
[17] P. K. Gupta, Approximate analytical solutions of fractional Benny-Lin equation by reduced differential transform method and the homotopy perturbation method, Computers and Mathematics with Applications 61 (2011) 2829-2842.
[18] E. Heinsalu, M. Patriarca, I. Goychuk, P. Hanggi, Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving, Physical Review Letters 99 (2007) 1-4.
[19] A. K. Khalifa, E. M. E. Elbarbary, M. A. Abd-Elrazek, Chebyshev expansion method for solving second and fourth order elliptic equations, Applied Mathematics and Computation 135 (2003) 307-318.
[20] Y. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Applied Mathematical Modelling 39 (2015) 1163-1171.
[21] Y. Jiang, J. Ma, High-order finite element methods for time-fractional partial differential equations, Journal of Computational and Applied Mathematics 235 (2011) 3285-3290.
[22] J. Liang, Y. Q. Chen, Hybrid symbolic and numerical simulation studies of timefractional order wave-diffusion systems, International Journal of Control 79 (2006) 1462-1470.
[23] C. P. Li, F. H. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcation Chaos 22 (2012) (28 pages) 1230014.
[24] Y. Lin, C. Xu, Finite difference/spectral approximations for the time fractional diffusion equation, Journal of Computational Physics 225 (2007) 1533-1552.
[25] F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation, Journal of Computational and Applied Mathematics 166 (2004) 209-219.
[26] C. F. Lorenzo, T. T. Hartley, Initialization, Conceptualization, and Application in the Generalized Fractional Calculus, NASA/TP, Lewis Research Center, OH, 1998.
[27] V. E. Lynch, B. A. Carreras, D. del Castillo-Negrete, K. Ferreira-Mejias, Numerical methods for the solution of partial differential equations of fractional order, Journal of Computational Physics 92 (2003) 406-421.
[28] W. McLean, K. Mustapha, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer Algor 52 (2009) 69-88.
[29] M. M. Meerschaert, D. Benson, B. Baumer, Multidimensional advection and fractional dispersion, Physical Review E 59 (1999) 5026-5028.
[30] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion equations, Journal of Computational and Applied Mathematics 172 (2004) 65-77.
[31] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two sided spacefractional partial differential equations, Applied Numerical Mathematics 56 (2006) 80-90.
[32] R. Metzler, E. Barkai, J. Klafter, Anomalous diffusion and relxation close to thermal equilibrium: a fractional Fokker-Planck equation, Physical Review Letters 82 (1999) 3563-3567.
[33] R. Metzler, E. Barkai, J. Klafter, Spaceand time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and Physical motivation , Chemical Physics 284 (2002) 67-90.
[34] R. Metzler, E. Barkai, J. Klafter, Deriving fractional Fokker-Planck equations from a generalized master equation, Euro physics Letters 46 (1999) 431-436.
[35] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Reports. 339 (2000) 1-77.
[36] R. Metzler, J. Klafter, The fractional Fokker-Planck equation: dispersive transport in an external force field, Journal of Molecular Liquids 86 (2000) 219-228.
[37] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, (1974).
[38] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
[39] I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis 3 (2000) 359-386.
[40] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, V. B. Jara, Matrix approach to discrete fractional calculus II: partial fractional differential equations, Journal of Computational Physics 228 (2009) 3137-3153.
[41] R. Scherer, S. L. Kalla, L. Boyadjiev, B. Al-Saqabi, Numerical treatment of fractional heat equations, Applied Numerical Mathematics 58 (2008) 1212-1223.
[42] P. P. Valko, J. Abate, Numerical inversion of 2-d Laplace transforms applied to fractional diffusion equation, Applied Numerical Mathematics 53 (2005) 73-88.
[43] A. Weron, M. Magdziarz, K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional FokkerPlanck equation, Physical Review E 77 (2008) 1-6.
[44] C. Wu, L. Lu, Implicit numerical approximation scheme for the fractional Fokker-Planck equation, Applied Mathematics and Computations 216 (2010) 1945-1955.
[45] S. Yuste, Weighted average finite difference methods for fractional diffusion equations, Journal of Computational Physics 216 (2006) 264-274.
[46] G. Zaslavsky, Chaos, fractional kinetics and anomalous transport, Phys. Rep. 371 (2002) 461-580.
[47] F. H. Zeng, C. P. Li, F. W. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013) 2976-3000.
[48] P. Zhang, F. Liu, V. Anh, Numerical approximation of Levy-Feller diffusion equation and its probability interpretation, Journal of Computational and Applied Mathematics 206 (2007) 1098-1115.
[49] P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a