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Abstract

This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The
space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive
integration matrix for this dimension. This approach shows that with less number of points, we can
approximate the solution with more accuracy. The numerical results of the examples are displayed.
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1 Introduction

I
n [35] the fractional kinetic of the diffusion,
diffusion-advection and Fokker-Planck type

were presented which derived asymptotically ran-
dom walk models and the generalization of the
master and the Langevin equations. In [46] the
concepts of fractional kinetic were discussed in
cases like, particle dynamics in different poten-
tials, particle advection in fluids, plasma physics
and fusion devices, quantum optics and etc.
Chechkin with co-workers in [3] proposed the
fractional Fokker-Planck equation (FFPE) for the
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kinetic description of relaxation and superdiffu-
sion processes in constant magnetic and random
electric fields. R. Friedrich in [14] presented the
FFPE for the joint position-velocity probability
distribution of a single fluid particle in a tur-
bulent flow. Meerschaert, et al. in [29] applied
a generalization of fractional diffusion equation
including multidimensional advection and frac-
tional dispersion. They extended the fractional
diffusion equation to two and three dimensions.
In [34] illustrated how FFPE for description of
anomalous diffusion in external fields can be de-
rived from a generalization of a master equation.
In [18] presented a modification of FFPE and the
authors of [43] presented a new modeling of subd-
iffusion in space-time-dependent force fields such
that without having to referring to FFPE. Also,
Ralf Metzler with co-workers have many papers
in study on fractional diffusion equations which
FFPE is playing important role in some of them
[2, 32, 33, 34, 36].
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As it is clear, the fractional kinetics equations
are developing. But, because of the complex
structure of these equations, the analytical solu-
tions for these equations are very rare. Hence, it
is expected that the numerical methods to solve
these equations will spread more quickly. Cur-
rently, the numerical solution for FDEs are known
but for the FPDEs are not known sufficiently and
requires more works. The authors of [27] ap-
plied explicit and semi-implicit schemes to solve
diffusion-reaction equations. Yuste [45] consid-
ered an extension of weighted average method for
the ordinary (non-fractional) diffusion equations
and used Grunwald-Letnikov approximation for
the Riemann-Liouville time derivative. Scherer et
al. [41] by modification of the Grunwald-Letnikov
approximation for Caputo time derivative in frac-
tional diffusion equation with non-zero initial
conditions presented a new numerical approach.
Meerchaert and Tadjeran in [30] developed prac-
tical numerical method for solution of one dimen-
sional space fractional advection dispersion equa-
tion with variable coefficients based on shifted
Grunwald-Letnikov approximation. Also they
applied shifted Grunwald-Letnikov approxima-
tion for two sided FPDE in [31]. Ervin and
Roop [12] presented a theoretical framework for
the Galerkin finite element approximation to the
steady state fractional advection dispersion equa-
tion and in [13] extended this work to the varia-
tional solution of this equation on bounded do-
mains in Rd. Valko and Abate [42] to solve
the time fractional diffusion equation on a semi-
infinite domain applied numerical inversion of 2-D
Laplace transforms. Liang and Chen [22] solved
the fractional wave-diffusion equation by using
a combination of symbolic mathematics and nu-
merical inversion of Laplace transform. For solu-
tion of the time fractional diffusion equation pro-
posed a numerical approach based on FDM in
time and Legendre spectral method in space by
Lin and Xu [24]. Zhang, Lin and Anh [48] consid-
ered the Levy-Feller fractional diffusion equation
and presented a numerical approximation to it on
its probability interpretation. Igor Podlubny and
co-workers in [40] proposed a general method for
the numerical solution of FPDEs based on the
matrix form representation of discretized frac-
tional operators which had been introduced in

[39]. William McLean and Kassem Mustapha
[28] applied a piecewice-constant, discontinuous
Galerkin method for the time discretization of a
subdiffusion equation. The analytical solutions of
time fractional Benny-Lin equation and time frac-
tional telegraph equation approximated in [17]
and [6], respectively. Jiang and Ma in [21] de-
veloped high-order method based on high-order
finite elements method for space and FDM for
time to solve time FPDEs.

With regard to the importance of FFPE, the
numerical method to solve this equation is in-
terested for researchers. Liu, Anh and Turner
[25] presented a numerical scheme to solve space
FFPE with instantaneous source such that the
equation transformed into a system of ODEs
which is solved by a method of lines. Weihua
Deng [7] solve the time FFPE such that firstly
transformed it into time fractional ODE in the
sence of Caputo derivative then used the com-
bination of predictor-corrector and method of
lines. Weihua Deng [8] developed the finite el-
ement method for the solution of space and time
FFPE which was an effective tool for describing
a process with both trap and flights. In [4] some
practical numerical methods to solve time FFPE
are used and also the solvability, stability, consis-
tency and convergence of these methods are dis-
cussed. The authors of [23] used finite difference
method to solve time FFPE and in [47] finite dif-
ference/element methods are presented to solve
time FFPE with Dirichlet boundary conditions.

Our main work in this paper is development
of used technique in [16] to solve the time FFPE.
We use the Gauss-Lobatto points to discretize the
space dimension and for discretization of time di-
mension in this equation we use the Grunwald-
Letnikov approximation. Hence, we mention
very briefly the history of the main method
which is Pseudo-spectral successive integration
matrix as follows. El-Gendi [10] developed a
new numerical method based on the Clenshaw
and Curtis quadrature scheme [5] to present a
new method for the numerical solution of lin-
ear integral equations of Fredholm and Volterra
types, then this method was extended to the lin-
ear integro-differential and ordinary differential
equations. In this method an operational matrix
for integration was presented. El-Gendi with co-
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workers [11] for successive integration of a func-
tion generalized the El-Gendi operational matrix
to present a new matrix. Elsayed M. E. Elbarbary
[9] using some properties of derivatives and inte-
grals of Chebyshev polynomials, derived an op-
erational matrix for n-fold integrations (pseudo-
spectral integration matrix) of a function. In fact,
this matrix was a modification of El-Gendi suc-
cessive integration matrix which was more accu-
rate. Gholami [15] for the first time, applied this
matrix with FDM to solve a PDE then in [1] with
co-authors used this matrix to solve a PDE alone.
Now, we apply the pseudo-spectral successive in-
tegration matrix to discretization of the space di-
mension and Grunwald-Letnikov approximation
for the time dimension for numerical solution of
time FFPE.

2 Preliminaries

2.1 Concepts of Fractional Derivatives

In this subsection we present the most important
definitions for the fractional derivatives.

Definition 2.1 The Riemann-Liouville frac-
tional derivative of order m − 1 < α < m
is

aD
α
xf(x) =

[
1

Γ(m− α)

dm

dξm

∫ ξ

a

f(η)

(ξ − η)α−m+1
dη

]
ξ=x

,

(2.1)

xD
α
b f(x) =

[
1

Γ(m− α)

dm

dξm

∫ b

ξ

f(η)

(η − ξ)α−m+1
dη

]
ξ=x

.

(2.2)

Definition 2.2 The Caputo fractional derivative
of order m− 1 < α < m is

C
a D

α
xf(x) =

1

Γ(m− α)

∫ x

a

f (m)(η)

(x− η)α−m+1
dη,

(2.3)

C
xD

α
b f(x) =

1

Γ(m− α)

∫ b

x

f(η)

(η − x)α−m+1
dη.

(2.4)

Definition 2.3 [26] The Grunwald-Letnikov
fractional derivative of order m− 1 < α < m is

Dα
a+f(x) = lim

h→0,nh=x−a
h−α

n∑
j=0

(−1)
j

(
α
j

)
f(x−jh),

(2.5)

Dα
b−f(x) = lim

h→0,nh=b−x
h−α

n∑
j=0

(−1)
j

(
α
j

)
f(x+jh).

(2.6)

From [38] we can write

Dα
a+f(x) =

m−1∑
j=0

f (j)(a)(x− a)j−α

Γ(j − α+ 1)

+
1

Γ(m− α)

∫ x

a

f (m)(η)

(x− η)α−m+1
dη, (2.7)

Dα
b−f(x) =

m−1∑
j=0

(−1)j f (j)(b)(b− x)j−α

Γ(j − α+ 1)

+
(−1)m

Γ(m− α)

∫ b

x

f (m)(η)

(η − x)α−m+1
dη, (2.8)

for m − 1 < α < m. Using repeated integration
by parts then differentiation of Riemann-Liouville
fractional derivative we have

dm

dξm

∫ ξ

a

f(η)

(ξ − η)α−m+1
dη = Γ(m− α)

m−1∑
j=0

f (j)(a)(ξ − a)j−α

Γ(j − α+ 1)
+

∫ ξ

a

f (m)(η)

(ξ − η)α−m+1
dη.

(2.9)
Similarly

dm

dξm

∫ b

ξ

f(η)

(η − ξ)α−m+1
dη = Γ(m− α)

m−1∑
j=0

(−1)j f (j)(b)(b− ξ)j−α

Γ(j − α+ 1)

+ (−1)m
∫ b

ξ

f (m)(η)

(η − ξ)α−m+1
dη, (2.10)

These equations show that

aD
α
xf(x) = Dα

a+f(x), bD
α
xf(x) = Dα

b−f(x). (2.11)

Indeed, the Grunwald-Letnikov derivative and
the Riemann-Liouville derivative are equivalent
if the function f(x) has m− 1 continuous deriva-
tives and f (m)(x) is integrable on closed interval
[a, b]. Using this fact [25], by the relationship
between Riemann-Liouville fractional derivative
and Grunwald-Letnikov fractional derivative we
will derive a numerical solution such that we use
the Riemann-Liouville definition during problem
formulation and then the Grunwald-Letnikov def-
inition for achieving the numerical solution. From
the standard Grunwald definition we have
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Definition 2.4 [49] The standard Grunwald for-
mula for w(x, t) which a ≤ x ≤ b is

Dα
a+w(x, t) =

lim
M1→∞

h−α
1

M1∑
j=0

(−1)
j

(
α
j

)
w(x− jh1, t), (2.12)

Dα
b−w(x, t) =

lim
M2→∞

h−α
2

M2∑
j=0

(−1)
j

(
α
j

)
w(x+ jh2, t), (2.13)

where M1,M2 ∈ N,h1 = x−a
M1

, h2 = b−x
M2

and g
(j)
α

are the normalized Grunwald weights functions
defined as

g(j)α = −α− j + 1

j
g(j−1)
α , j = 1, 2, ... (2.14)

with g
(0)
α = 1.

Let Ω = [a, b] × [0, T ], (x, t) ∈ Ω, tk = kτ, k =
0(1)n, xi = a + ih, i = 0(1)m,with τ = T

n and

h = b−a
m be time and space steps, respectively.

From [30], for w(x, t) ∈ L1(Ω), Dα
a+w(x, t) ∈ ℓ(Ω)

and Dα
b−w(x, t) ∈ ℓ(Ω), we obtain

Dα
a+w(xi, tk) =

h−α
i∑

j=0

(−1)
j

(
α
j

)
w(xi−j , tk) +O(h), (2.15)

Dα
b−w(xi, tk) =

h−α
m−i∑
j=0

(−1)
j

(
α
j

)
w(xi+j , tk) +O(h). (2.16)

2.2 Pseudo-spectral integration ma-
trix

We assume that (PNf)(x) is the N th order
Chebyshev interpolating polynomial of the func-
tion f(x) at the points (xk, f(xk)) where

(PNf)(x) =
N∑
j=0

fj φj(x), (2.17)

with

φj(x) =
2αj

N

N∑
r=0

αr Tr(x)Tr(xj), (2.18)

where φj(xk) = δj,k, (δj,k is the Kronecker delta)
and α0 = αN = 1/2 , αj = 1 for j = 1(1)N − 1.
Since (PNf)(x) is a unique interpolating polyno-
mial of order N, it can be expressed in terms of a
series expansion of the classical Chebyshev poly-
nomials, hence we have

(PNf)(x) =
N∑
r=0

ar Tr(x), (2.19)

where

ar =
2αr

N

N∑
j=0

αj f(xj)Tr(xj). (2.20)

The successive integration of f(x) in the interval
[−1, xk] can be estimated by successive integra-
tion of (PNf)(x). Thus we have

In(f) ≃
N∑
r=0

ar

∫ x

−1

∫ tn−1

−1

...

∫ t2

−1

∫ t1

−1

Tr(t0) dt0 dt1... dtn−2 dtn−1.

(2.21)

Theorem 2.1 [19] The exact relation between
Chebyshev functions and its derivatives is ex-
pressed as

Tr(x) =
n∑

m=0

(−1)m
(
n
m

)
2nχm

T
(n)
r+n−2m, r > n,

where

χm =

n∏
j=0

j ̸=n−m

(r + n−m− j).

Theorem 2.2 [9] The successive integration of
Chebyshev polynomials is expressed in terms of
Chebyshev polynomials as∫ x

−1

∫ tn−1

−1

...

∫ t2

−1

∫ t1

−1

Tr(t0) dt0 dt1... dtn−2 dtn−1

=

n−γr∑
m=0

βr

(−1)m
(
n
m

)
2nχm

ξn,m,r(x),

where

ξn,m,r(x) = Tr+n−2m(x)−
n−1∑
i=0

ηi T
(i)
r+n−2m(−1),
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ηi =

i∑
j=0

xj

(i− j)!j!
,

βi =

{
2 i = 0,
1 i > 0,

χm =
n∏

j=0
j ̸=n−m

(r + n−m− j),

γi =

 n i = 0,
n− i+ 1 1 ≤ i ≤ n,
0 i > n,

Thus, from Theorem (2.2) and relations (2.20)
and (2.21), we have

In(f) ≃
N∑
j=0

(
2αj

N

N∑
r=0

αr Tr(xj)

n−γr∑
m=0

βr
(−1)m

(
n
m

)
2nχm

ξn,m,r(x)

)
f(xj).

The matrix form of the successive integration of
the function f(x) at the Gauss-Lobatto points xk
is

[In(f)] =

[
N∑
j=0

(
2αj

N

N∑
r=0

αr Tr(xj)

n−γr∑
m=0

βr

(−1)m
(
n
m

)
2nχm

ξn,m,r(x)

)
f(xj)

 = Θ(n)[f ].

(2.22)

The elements of the matrix Θ(n) are

ϑ
(n)
k,j =

2αj

N

N∑
r=0

αr Tr(xj)

n−γr∑
m=0

βr
(−1)m

(
n
m

)
2nχm

ξn,m,r(xk). (2.23)

The matrix Θ(n) in (2.22), presented in [9], is
called the pseudo-spectral integration matrix.

3 Fractional Fokker-Planck
Equation

We consider the time fractional Fokker-Planck
equation (FFPE)

∂w(x, t)

∂t
= 0D

1−α
t

[
∂f(x)

∂x
+Kα

∂2

∂x2

]
w(x, t),

(3.24)
(x, t) ∈ [a, b]× [0, t]. With initial condition

w(x, 0) = p(x), a ≤ x ≤ b,

and boundary conditions

w(a, t) = g1(t), w(b, t) = g2(t), 0 ≤ t ≤ T,

where g1, g2 and p are known functions and w
is unknown, also 0D

1−α
t is the Riemann-Liouville

derivative of order 1− α (0 ≤ α ≤ 1), i.e.

0D
1−α
t w(x, t) =

1

Γ(α)

d

dt

∫ t

0

w(x, τ)

(t− τ)1−α dτ.

We can rewrite (3.24) as in [4]

0D
α
t w(x, t)−

w(x, 0)

tαΓ(1− α)
=

[
∂f(x)

∂x
+Kα

∂2

∂x2

]
w(x, t). (3.25)

(x, t) ∈ [a, b] × [0, t]. But, by the relationship
between Caputo fractional derivative ∂α

∂tα and
Riemann-Liouville fractional derivative 0D

α
t , i.e.

∂αw(x, t)

∂tα
= 0D

α
t w(x, t)−

w(x, 0)

tαΓ(1− α)
,

we can write the (FFPE) in (3.24) as

∂αw(x, t)

∂tα
=

[
∂f(x)

∂x
+Kα

∂2

∂x2

]
w(x, t). (3.26)

Let xi = − cos iπ
N forN ∈ N be the Gauss-Lobatto

points. Now, we apply pseudo-spectral successive
integration matrix to solve (FFPE). Assume
that

∂2w(x, t)

∂x2


xi

= φ(xi, t), (3.27)

∂w(x, t)

∂x


xi

=
N∑
j=0

ϑ
(1)
i,j φ(xj , t) + c1, (3.28)
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Table 1: Max error for example (4.1) when N = 4 and m = 4.

t α = 0.1 α = 0.4 α = 0.7 α = 0.9
0.25 7.49E− 5 3.60E− 4 7.58E− 4 1.10E− 3
0.5 1.58E− 4 8.09E− 4 1.85E− 3 2.87E− 3
0.75 2.42E− 4 1.27E− 3 2.99E− 3 4.56E− 3
1 3.26E− 4 1.73E− 3 4.14E− 3 6.67E− 3

Table 2: Max errors for example (4.1) when N = 4, 8 and m = 10.

t α = 0.1 α = 0.4 α = 0.7 α = 0.9
0.1 1.19E− 5 5.52E− 5 1.08E− 4 1.44E− 4
0.2 2.52E− 5 1.25E− 4 2.70E− 4 3.95E− 4
0.3 3.85E− 5 1.97E− 4 4.45E− 4 6.79E− 4
0.4 5.19E− 5 2.69E− 4 6.24E− 4 9.76E− 4
0.5 6.53E− 5 3.42E− 4 8.05E− 4 1.28E− 3
0.6 7.87E− 5 4.15E− 4 9.87E− 4 1.58E− 3
0.7 9.21E− 5 4.89E− 4 1.17E− 3 1.89E− 3
0.8 1.05E− 4 5.63E− 4 1.35E− 3 2.19E− 3
0.9 1.19E− 4 6.37E− 4 1.54E− 3 2.50E− 3
1 1.32E− 4 7.11E− 4 1.72E− 3 2.81E− 3

Table 3: Max errors for example (4.1) when N = 4, 8 and m = 20.

t α = 0.1 α = 0.4 α = 0.7 α = 0.9
0.05 2.96E− 6 1.32E− 5 2.35E− 5 2.81E− 5
0.1 6.26E− 6 3.02E− 5 6.06E− 5 8.08E− 5
0.15 9.58E− 6 4.76E− 5 1.02E− 4 1.45E− 4
0.2 1.29E− 5 6.54E− 5 1.45E− 4 2.14E− 4
0.25 1.62E− 5 8.33E− 5 1.88E− 4 2.86E− 4
0.3 1.96E− 5 1.01E− 4 2.33E− 4 3.60E− 4
0.35 2.29E− 5 1.19E− 4 2.77E− 4 4.34E− 4
0.4 2.63E− 5 1.38E− 4 3.23E− 4 5.09E− 4
0.45 2.96E− 5 1.56E− 4 3.68E− 4 5.85E− 4
0.5 3.29E− 5 1.74E− 4 4.13E− 4 6.61E− 4
0.55 3.63E− 5 1.92E− 4 4.59E− 4 7.37E− 4
0.6 3.96E− 5 2.11E− 4 5.05E− 4 8.13E− 4
0.65 4.30E− 5 2.29E− 4 5.51E− 4 8.90E− 4
0.7 4.63E− 5 2.48E− 4 5.96E− 4 9.66E− 4
0.75 4.96E− 5 2.66E− 4 6.42E− 4 1.04E− 3
0.8 5.30E− 5 2.84E− 4 6.89E− 4 1.12E− 3
0.85 5.63E− 5 3.03E− 4 7.35E− 4 1.19E− 3
0.9 5.96E− 5 3.21E− 4 7.81E− 4 1.27E− 3
0.95 6.30E− 5 3.40E− 4 8.27E− 4 1.34E− 3
1 6.63E− 5 3.58E− 4 8.73E− 4 1.41E− 3

Table 4: The comparison of our method and INAS in [44].

Our method INAS
N and m Number of points Maxerrors α Maxerrors Number of points N and m
N=m=4 25 1.73E− 3 0.4 3.00E− 3 2601 N=m=50
N=m=4 25 4.14E− 3 0.7 4.69E− 3 2601 N=m=50
N=m=4 25 6.67E− 3 0.9 6.07E− 3 2601 N=m=50
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Table 5: The comparison of our method and INAS in [44].

Our method INAS
N and m Number of points Maxerrors α Maxerrors Number of points N and m

N=4, m=10 55 7.11E− 4 0.4 1.51E− 3 10201 N=m=100
N=4, m=10 55 1.72E− 3 0.7 2.35E− 3 10201 N=m=100
N=4, m=10 55 2.81E− 3 0.9 3.04E− 3 10201 N=m=100

Table 6: The comparison of our method and INAS in [44].

Our method INAS
N and m Number of points Maxerrors α Maxerrors Number of points N and m

N=4, m=20 105 3.58E− 4 0.4 6.00E− 4 40401 N=m=200
N=4, m=20 105 8.73E− 4 0.7 1.23E− 3 40401 N=m=200
N=4, m=20 105 1.41E− 3 0.9 1.50E− 3 40401 N=m=200

Table 7: Max error for example (4.2) when N = 4 and m = 4.

t α = 0.2 α = 0.5 α = 0.8
0.25 1.42E− 3 5.25E− 3 1.18E− 2
0.5 2.69E− 3 8.35E− 3 1.63E− 2
0.75 3.91E− 3 1.08E− 2 1.88E− 2
1 5.10E− 3 1.29E− 2 2.06E− 2

Table 8: Max errors for example (4.2) when N = 4, 8 and m = 10.

t α = 0.2 α = 0.5 α = 0.8
0.1 2.66E− 4 1.21E− 3 3.15E− 3
0.2 5.04E− 4 1.96E− 3 4.72E− 3
0.3 7.29E− 4 2.55E− 3 5.67E− 3
0.4 9.50E− 4 3.06E− 3 6.34E− 3
0.5 1.17E− 3 3.52E− 3 6.85E− 3
0.6 1.39E− 3 3.94E− 3 7.27E− 3
0.7 1.61E− 3 4.34E− 3 7.64E− 3
0.8 1.84E− 3 4.73E− 3 7.97E− 3
0.9 2.07E− 3 5.10E− 3 8.28E− 3
1 2.31E− 3 5.46E− 3 8.57E− 3

w(xi, t) =
N∑
j=0

ϑ
(2)
i,j φ(xj , t) + c1(xi + 1) + c2,

(3.29)
for i = 0(1)N . The constants c1 and c2 are ob-
tained to satisfy the boundary conditions. From
these conditions we have c2 = g1(t) and

c1 = −1

2

( N∑
j=0

ϑ
(2)
N,j φ(xj , t) + g1(t)− g2(t)

)
.

By substituting c1 and c2 into (3.28) and (3.29),
we have

w(xi, t) =
N∑
j=0

ϑ
(2)
i,j φ(xj , t) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , t) + Zi(t), i = 0(1)N, (3.30)

∂w(x, t)

∂x


xi

=

N∑
j=0

ϑ
(1)
i,j φ(xj , t)−

1

2

( N∑
j=0

ϑ
(2)
N,j

+ g1(t)− g2(t)

)
, i = 0(1)N, (3.31)

which

Zi(t) =
1

2
xi(g2(t)− g1(t)) +

1

2
(g2(t) + g1(t)),

(3.32)
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Table 9: Max errors for example (4.2) when N = 4, 8 and m = 20.

t α = 0.2 α = 0.5 α = 0.8
0.05 7.39E− 5 3.88E− 4 1.06E− 3
0.1 1.38E− 4 6.41E− 4 1.71E− 3
0.15 1.96E− 4 8.38E− 4 2.14E− 3
0.2 2.51E− 4 1.01E− 3 2.46E− 3
0.25 3.03E− 4 1.15E− 3 2.70E− 3
0.3 3.53E− 4 1.29E− 3 2.90E− 3
0.35 4.02E− 4 1.41E− 3 3.06E− 3
0.4 4.49E− 4 1.52E− 3 3.20E− 3
0.45 4.96E− 4 1.63E− 3 3.31E− 3
0.5 5.41E− 4 1.73E− 3 3.42E− 3
0.55 5.86E− 4 1.83E− 3 3.52E− 3
0.6 6.30E− 4 1.92E− 3 3.60E− 3
0.65 6.73E− 4 2.01E− 3 3.68E− 3
0.7 7.16E− 4 2.10E− 3 3.76E− 3
0.75 7.58E− 4 2.18E− 3 3.82E− 3
0.8 7.99E− 4 2.26E− 3 3.89E− 3
0.85 8.40E− 4 2.33E− 3 3.95E− 3
0.9 8.81E− 4 2.41E− 3 4.01E− 3
0.95 9.21E− 4 2.48E− 3 4.06E− 3
1 9.61E− 4 2.55E− 3 4.10E− 3

Now, we substitute (3.27), (3.30) and (3.31) into
main equation (3.25) to obtain

N∑
j=0

ϑ
(2)
i,j 0D

α
t φ(xj , t) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j 0D

α
t φ(xj , t) =

( N∑
j=0

ϑ
(2)
i,j φ(xj , t)

−1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , t) + Zi(t)

)
f ′(xi)

+

[ N∑
j=0

ϑ
(1)
i,j φ(xj , t)−

1

2

( N∑
j=0

ϑ
(2)
N,jφ(xi, t)

+g1(t)− g2(t)

)]
f(xi) +

p(xi)

tα Γ(1− α)

+Kαφ(xi, t)− 0D
α
t Zi(t), i = 0(1)N. (3.33)

Now, by using the relationship between
Grunwald-Letnikov and Riemann-Liouville we
apply the approximation of standard Grunwald
formula in the time. Let

tk = kτ, k = 0(1)m, τ =
T

m
.

Hence, for t = tk and k = 0(1)m we have

0D
α
tk
φ(xj , t) = τ−α

k∑
r=0

g(r)α φ(xj , tk−r), (3.34)

where g
(r)
α are normalized Grunwald weights func-

tions. If (3.34) substitute (3.33) then for (xi, tk)
we obtain

τ−α
k∑

r=0

g(r)α

( N∑
j=0

ϑ
(2)
i,j φ(xj , tk−r) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , tk−r)

)
+ 0D

α
tk
Zi(tk) =

f ′(xi)

( N∑
j=0

ϑ
(2)
i,j φ(xj , tk) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , tk)

)
+ f(xi)

( N∑
j=0

ϑ
(1)
i,j φ(xj , tk)

−1

2

N∑
j=0

ϑ
(2)
N,jφ(xi, tk)

)
+Kαφ(xi, tk)

+
p(xi)

tαk Γ(1− α)
+ f ′(xi)Zi(tk), (3.35)
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for i = 0(1)N and k = 0(1)m. Since g
(0)
α = 1 we

obtain[
(1− τα f ′(xi))Ai − τα f(xi)Vi

]
Φk =

τα
(
Kαφ(xi, tk) + f ′(xi)Zi(tk)−

1

2
f(xi)

(g1(tk)− g2(tk)) +
p(xi)

tαk Γ(1− α)

− 0D
α
tk
Zi(tk)

)
−

k∑
r=1

g(r)α AiΦ
k−r, (3.36)

for i = 0(1)N and k = 0(1)m. Which to summa-
rize, we define

Ai = [ϑ
(2)
i,0 , ϑ

(2)
i,1 , ..., ϑ

(2)
i,N ]

− 1

2
(Xi + 1)[ϑ

(2)
N,0, ϑ

(2)
N,1, ..., ϑ

(2)
N,N ], (3.37)

Vi = [ϑ
(1)
i,0 , ϑ

(1)
i,1 , ..., ϑ

(1)
i,N ]

− 1

2
[ϑ

(2)
N,0, ϑ

(2)
N,1, ..., ϑ

(2)
N,N ], (3.38)

Φk = [φ0,k, φ1,k, ..., φN,k]
t, (3.39)

indeed, (3.36) is the following system

AΦk = Bk. (3.40)

With all unknowns φ(xi, tk) for i = 0(1)N and
k = 0(1)m. By solving this system, we can ap-
proximate all φ(xi, tk) from (3.30).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
x

 

exact
alpha=0.4

Figure 1: Comparison of numerical solutions of
the example (4.1) at some values of t

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
x

 

.......   exact
   o     alpha=0.4

Figure 2: Comparison of numerical solutions of the
example (4.1) for some values of t

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

x

numerical solution for N=8, m=20, alpha=0.4

t

Figure 3: The approximation solution of example
(4.1) when α = 0.4.

4 Examples

Example 4.1 Consider the FFPE in [44] by
translating 0 ≤ x ≤ 1 to −1 ≤ X ≤ 1 as

∂w(X, t)

∂t
= 0D

1−α
t

[
2

∂

∂X

(
2d(X)

∂w

∂X

)
+ f(X, t)

]
,

(4.41)

(X, t) ∈ [−1, 1]× [0, 1], 0 ≤ α ≤ 1,

where d(X) = e(
X+1

2
) and

f(X, t) =
Γ(3 + α)

Γ(3)
t2 e(

X+1
2

) − 2 e(X+1) t2+α,

with initial condition

w(x, 0) = 0, −1 ≤ X ≤ 1,

and boundary conditions

w(−1, t) = t2+α, w(1, t) = e t2+α, 0 ≤ t ≤ 1,

The exact solution of this equation is

w(X, t) = e(
X+1

2
)t2+α. The numerical re-

sults of this problem are presented in the Tables
1-6 and Figures 1-3.
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−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

x

Numerical solutions for N=8, m=20, alpha=0.2

t

Figure 4: The approximation solution of example
(4.2) when α = 0.2.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
x

 
exact
alpha=0.2
alpha=0.5
alpha=0.8

Figure 5: Comparison of numerical solutions of the
example (4.2) at t = 0.2.

Example 4.2 Consider the FFPE in [20] by
translating 0 ≤ x ≤ 1 to −1 ≤ X ≤ 1 as

∂w

∂t
= 0D

1−α
t

[(
2

∂

∂X
f(X) + 4Kα

∂2w

∂X2

)
+ g(X, t)

]
,

(4.42)

(X, t) ∈ [−1, 1]× [0, 1], 0 ≤ α ≤ 1,

with initial and boundary conditions

w(x, 0) = w(−1, t) = w(1, t) = 0,

where

g(X, t) =
Γ(3)

Γ(3− α)
t2−α sin

π(X + 1)

2
−

t2 e
X2

4

[
x sin

π(X + 1)

2
+ π cos

π(X + 1)

2

]

+Kαπ
2t2 sin

π(X + 1)

2
,

with Kα = 1, f(X) = e
X2

4 . The exact solution

of this equation is w(X, t) = t2 sin π(X+1)
2 . The

numerical results of this problem are presented in
the Tables 7-9 and Figures 4-6.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
x

t=1

t=0.75

t=0.5

t=0.25

t=0

−−−o−−−   exact
   *      alpha=0.5

Figure 6: Comparison of numerical solutions of the
example (4.2) at some values of t

5 Conclusion

In this paper, fractional Fokker-Planck equation
considered as one important fractional PDEs. A
new numerical approach for solution of time frac-
tional Fokker-Planck equation presented which
is combination of pseudo-spectral successive in-
tegration matrix and normalized Grunwald ap-
proximations. In the present approach, we used
two different discretization of space/time dimen-
sions. This method showed that with less number
of points we can approximate the solutions with
enough accuracy.
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