Impulsive Control of Attitude Satellite With Quaternion Parameters
Subject Areas : International Journal of Industrial Mathematicsمحمدرضا نیکنام 1 , نادره عبدی صبوحی 2
1 - Department of Mathematics, Khalkhal Branch, Islamic Azad University, Khalkhal, Iran.
2 - Department of Education, Farhangian University, Tabriz, Iran.
Keywords: Satellite attitude, Lyapunov exponent, Impulsive control, Quaternion, Chaotic system,
Abstract :
This article uses impulsive control along with quaternion parameters instead of Euler angles in kinematics equations of satellite. The quaternion parameters are applied to overcome singularity problem in the numerical solution. It is assumed that the satellite is subjected to deterministic external perturbations. At first, the chaotic behavior of system is investigated when there is no control on the system. Then, impulsive control is used to stabilize the satellite attitude around the equilibrium point of origin. Finally, simulation results are given to visualize the effectiveness and feasibility of the proposed method.
[1] J. L. Crassidis, F. L. Markley, Sliding mode control using modified Rodrigues parameters, J Guidance Control Dyn 19 (1996) 1381-1383.
[2] K. M. Fauske, Attitude stabilization of an underactuated rigid spacecraft, Siving thesis, Department of Engineering and Cybernetics, Norwegian University of Technology and Science 13 (2003) 511-523.
[3] D. Fragopoulos, M. Innocenti, Stability considerations in quaternion attitude control using discontinuous Lyapunov functions, IEE Proc Control Theory Appl. 151 (2004) 253-258.
[4] K. Kemih, A. Kemiha, M. Ghanes, Chaotic attitude control of satellite using impulsive control, Chaos, Solitons & Fractals 42 (2009) 735-744.
[5] K. Kemih, W. Y. Liu, Constrained generalized predictive control of chaotic Lu system, ICIC Express Lett, An Int. J. Res. Surv. 1 (2007) 39-44.
[6] N. Koncar, A. J. Jones, Adaptive real-time neural network attitude control of chaotic satellite motion, Proc, SPIE 2492, Applications and Science of Artificial Neural Networks, (1995), http://dx.doi.org/10.1117/12.205121/.
[7] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential eqations, World Scientific, Sangapore,(1989).
[8] C. Li, M. Guangfu, S. Bin, Passivity-based nonlinear attitude regulation of rigid spacecraft subject to control saturation, The Sixth World Congress on Intelligent Control and Automation 2 (2006) 8421-8425.
[9] X. D. Li, X. Y. Yang, J. D. Cao, Eventtriggered impulsive control for nonlinear delay systems, Automatica 117 (2020) 108-129.
[10] M. R. Niknam, H. Kheiri, N. Abdi Sobouhi, Optimal control of satellite attitude and its stability based on quaternion parameters, Computational Methods for Differential Equations 10 (2022) 168-178.
[11] M. R. Niknam, A. Heydari, Finite-time stabilization of satellite quaternion attitude, Computational Methods for Differential Equations 3 (2015) 274-283.
[12] M. R. Niknam, H. Kheiri, A. Heydari, Threeaxis optimal control of satellite attitude based on Ponteryagin maximum principle, International Journal of Industrial Mathematics 8 (2016) 37-44.
[13] Y. Park, Robust and optimal attitude control of spacecraft with disturbances, International Journal of Systems Science 46 (2015) 1222-1233.
[14] R. F. Rao, S. M. Zhong, Impulsive control on delayed feedback chaotic financial system with Markovian jumping, Adv. Diff. Equ 20 (2020) 1-18. http://dx.doi.org/10.1186/s13662-019-2438-0/
[15] L. L. Show, J. C. Juang, Y. W. Jan, An LMIbased nonlinear attitude control approach, IEEE Trans Control Syst Tech 11 (2003) 73-87.
[16] L. L. Show, J. C. Juang, Y. W. Jan, C. T. Lin, Quaternion feedback attitude control design: a nonlinear H1 approach, Asian J. Control 5 (2003) 406-411.
[17] A. P. M. Tsui, A. J. Jones, The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem, Physica 135 (2000) 41-62.
[18] R. Wisniewski, Satellite attitude control using only electromagnetic actuation, Ph.D. Thesis, The University of Aalborg, Denmark, (1996).
[19] X. Zhang, A. Khadra, D. Li, D. Yang, Impulsive stability of chaotic systems represented by T-S model, Chaos, Solitons & Fractals 41 (2009) 1863-1869.
[20] Y. Zhang, J. Sun, Robust synchronization of coupled delayed neural networks under general impulsive control, Chaos, Solitons & Fractals 41 (2009) 1476-1480.
[21] R. Zhang, Z. Xu, S. X. Yang, X. He, Generalized synchronization via impulsive control, Chaos, Solitons & Fractals 38 (2008) 97-105.