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Abstract

This article uses impulsive control along with quaternion parameters instead of Euler angles in kine-
matics equations of satellite. The quaternion parameters are applied to overcome singularity problem
in the numerical solution. It is assumed that the satellite is subjected to deterministic external per-
turbations. At first, the chaotic behavior of system is investigated when there is no control on the
system. Then, impulsive control is used to stabilize the satellite attitude around the equilibrium
point of origin. Finally, simulation results are given to visualize the effectiveness and feasibility of the
proposed method.
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1 Introduction

S
atellites are purposely located in orbit around

the Earth, other planets, or the Sun. They

should put themselves in the right direction rela-

tive to the Sun and Earth. Especially they have

to maintain, their solar panels toward the Sun

and their antennas toward the Earth.

It is important for us to control the position

of the satellites due to the gradual deviation of

their orientation as well as placing them in the

new desired position. Many control have been

introduced for this purpose so far. In general,

they are classified as active or passive methods.
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Passive method has been studied in [8]. Some

of the active methods include generalized predic-

tive control method [5], sliding-mode approach

[1], control method based on Lyapunov [3], non-

linear control based on linear matrix inequality

[15], nonlinear H∞ control [16], finite-time stabi-

lization of satellite quaternion attitude [11], and

Robust and optimal attitude control of spacecraft

with disturbances [13].

In recent years, impulsive control has been

widely used to stabilize chaotic systems [19, 20,

21, 9, 14]. Its necessity and importance lies in

that, in some cases, the system cannot be con-

trolled by continuous control.

The main purpose of this paper is to study the

possibility of using impulsive control on chaotic

attitude of satellite along with quaternion pa-

rameters instead of Euler angles in the satellite’s

kinematics equations. The reason behind using

impulsive control is its considerable and compa-
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rable speed as for achieving the equilibrium point

of system and stablizing system around this point

compared with other control methods, such as op-

timal control of satellite attitude [10, 12]. Also,

quaternion parameters are used to overcome sin-

gularity problem in the numerical solution. This

paper is organized as follows: Section 2, expresses

the governing equations of satellite attitude based

on quaternion parameters. Section 3, describes

chaotic behavior of system using Lyapunov ex-

ponents (LEs). Impulsive control of satellite at-

titude is explained in section 4, and simulation

results are shown in section 5. Finally, our con-

cluding remarks are given.

2 Quaternion and motion equa-
tions

2.1 Quaternion

The unit quaternion vector provides a non-

singular representation of satellite kinematic

equations. The four-component quaternion vec-

tor is defined as [18]

q = iq1 + jq2 + kq3 + q4, (2.1)

where i, j, and k are imaginary numbers satisfy-

ing the condition

i2 = j2 = k2 = −1,
ij = −ji = k,
jk = −kj = i,
ki = −ik = j.

(2.2)

In this definition q4 is a scalar part, and Q =

[q1 q2 q3]
T form a vector part. Thus the quater-

nion q = [q1 q2 q3 q4]
T may be written as q =

[QT q4]
T . The norm of q is defined as

|q|=
√

q21 + q22 + q23 + q24. (2.3)

2.2 Motion equations

The mathematical model of a satellite is de-

scribed by kinetic and kinematic equations of mo-

tion.

2.2.1 Kinetic Equations

The relationship between angular velocity and

torque in the body frame is expressed by kinetic

equations. If we consider the satellite as a rigid

object and also the inertia of its body is diagonal

and along to the actuators, then kinetic equations

can be obtained from a Newton-Euler formula [2]

Ixẇx = [(Iy − Iz)wywz + τx] ,
Iyẇy = [(Iz − Ix)wxwz + τy] ,
Izẇz = [(Ix − Iy)wxwy + τz] ,

(2.4)

where wx, wy, wz are angular velocities around

axes of the body, Ix, Iy, Iz are the inertial mo-

ments of satellite around its principal axes, and

τx, τy, τz are torques around these axes.

2.2.2 Kinematic Equations

By regarding the satellite as an rigid object, the

kinematics equations based on quaternion param-

eters are expressed as follows

q̇1 =
1
2 (wxq4 − wyq3 + wzq2) ,

q̇2 =
1
2 (wxq3 + wyq4 − wzq1) ,

q̇3 =
1
2 (wyq1 − wxq2 + wzq4) ,

q̇4 = −1
2 (wxq1 + wyq2 + wzq3) .

(2.5)

The relationship between attitude and angular

velocity is explained by the kinematic equations.

In the following, we use the notation SA to refer

to the equations (2.4) and (2.5).

3 Analysis of chaos in the SA
system

In this section the LEs of the SA system are ob-

tained by assuming initial conditions and con-

stant values given in Table 1, under the perturb-

ing torques [6, 17] τx
τy
τz

=
 −1200 0 (1000)

√
6
2

0 350 0

−(1000)
√
6 0 −400

wx

wy

wz

 .

(3.6)

The value of each of exponents is depicted in Ta-

ble 2, and existing positive LEs, indicate that the

system is chaotic.
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Table 1: Initial conditions and constant values of the SA system.

Attitudes Values Constants Values

Groups Stroke Non- Stroke PercentageCorrect
q10 0.2425 Ix(kgm

2) 3000
q20 0.04915 Iy(kgm

2) 2000
q30 0.4645 Iz(kgm

2) 1000
q40 0.8503
wx0(r/s) 0.2
wy0(r/s) 0.1
wz0(r/s) 0.2

Table 2: LEs values of the SA system.

LEs Values LEs Values

λq1 -7.8762 e-08 λwx +0.13533
λq2 -7.8762 e-08 λwy +0.00954
λq3 -7.8762 e-08 λwz -0.76986
λq4 -7.8762 e-08

4 Impulsive control of the SA
system

Consider the general nonlinear system

ẋ = f(t, x), (4.7)

where f : R+ × Rn −→ Rn is contuniuous,

x ∈ Rn is the state variable. An impulsive con-

trol law of system (4.7) is given by a sequence,

{ti, ui(x(ti))}, which has the effect of suddenly

changing the state of the system at the instants

tk, where t1 < t2 < ... < tk < ..., lim tk → ∞ as

k → ∞ and t1 > t0; that is

∆x |ti= x(t+i )− x(ti) = ui(x(ti)), (4.8)

where x(t+i ) = limt−→t+i
x(t) and x(ti) =

limt−→t−i
x(t). Furthermore, ui(x(ti)), can be

chosen as Bix(ti) with Bi being n × n matri-

ces. Accordingly, the impulsively controlled sys-

tem can be expressed as follows
ẋ(t) = f(t, x), t ̸= ti
∆x = Bix, t = ti (i = 1, 2, ...)
x(t+0 ) = x0,

(4.9)

which is also called an impulsive differential sys-

tem [7].

Decomposing the linear and nonlinear parts of

the SA system we have

ẋ(t) = Ax(t) +Nx(t), (4.10)

where

x =



q1
q2
q3
q4
wx

wy

wz


, N =



0
0
0
0

(Iy−Iz)
Ix

wywz
(Iz−Ix)

Iy
wxwz

(Ix−Iy)
Iz

wxwy


, (4.11)

A =



0 0 0 0 1
2 0 0

0 0 0 0 0 1
2 0

0 0 0 0 0 0 1
2

0 0 0 0 0 0 0

0 0 0 0 −1200
Ix

0 1000
√
6

2Ix
0 0 0 0 0 350

Iy
0

0 0 0 0 −1000
√
6

Iz
0 −400

Iz


.

(4.12)

The impulsive control system is given by
ẋ(t) = Ax(t) +Nx(t), t ̸= ti
ui(x(ti)) = x(t+i )− x(t−i ) = Bix(t

−
i ),

x(t+0 ) = x0,
(4.13)
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Figure 1: Time series responses corresponding to
quaternion parameters in system (4.13) via impulsive
control.

where ti, (i = 1, 2, ...) denote the instants when

impulsive control occur, ui(x(ti)), (i = 1, 2, ...)

are control functions in the time ti, and Bi, (i =

1, 2, ...) are n× n matrices . For convenience, de-

fine the following notations
λm(A) = 1

2λmax(A+AT ),

βi = λmax[(I +Bi)
T (I +Bi)], i = 1, 2, ...

(4.14)

where I is the n×n identity matrix, and λmax(A)

is the maximal eigenvalue of matrix A.

Theorem 4.1. (1) If 2λm(A) = λ < 0 (λ is a

constant) and there is α constant 0 ≤ α < −λ,

Figure 2: Time series responses corresponding to an-
gular velocities in system (4.13) via impulsive control.

such that

βi ≤ eα(ti−ti−1), i = 1, 2, ... (4.15)

then the trivial solution (4.13) is globally expo-

nentially stable.

(2) If 2λm(A) = λ ≥ 0 (λ is a constant) and

there is α constant α ≥ 1, such that

αβie
λ(ti+1−ti) ≤ 1, i = 1, 2, ... (4.16)

then α = 1 implies that the trivial solution (4.13)

is stable; and α > 1 implies that the trivial solu-

tion (4.13) is globally and asymptotically stable.

Proof. [4].
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Figure 3: Time series responses corresponding to
Euler angles in SA system via optimal control.

For convenience, the gain matrices Bi are often

selected as a constant matrix and the impulsive

distances τi = ti − ti−1, (i = 1, 2, ...) are set to be

a positive constant. Then we have the following

corollary.

Corollary 4.1. Assume τi = τ > 0, and matri-

ces Bi = B, (i=1,2,...)

(1) If 2λm(A) = λ < 0 (λ is a constant)

and there is α constant 0 ≤ α < −λ, such that

βi ≤ eατ , then the trivial solution (4.13) is

globally and exponentially stable.

(2) If 2λm(A) = λ ≥ 0 (λ is a constant) and

Figure 4: Time series responses corresponding to
angular velocities in SA system via optimal control.

there is α constant α ≥ 1, such that, αβie
λτ ≤ 1,

then α = 1 implies that the trivial solution (4.13)

is stable; and α > 1 implies that the trivial solu-

tion (4.13) is globally and asymptotically stable.

5 Numerical simulation of im-
pulsive control

In this section, in order to demonstrate and verify

the performance of the proposed method, some

numerical simulations are presented using Maple.

Assuming the initial point and the constant val-

ues given in Table 1, we control satellite attitude

to its equilibrium point (0, 0, 0, 1, 0, 0, 0). consid-
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ering these assumptions and mentioned subjects

we have

A+AT=



0 0 0 0 1
2 0 0

0 0 0 0 0 1
2 0

0 0 0 0 0 0 1
2

0 0 0 0 0 0 0
1
2 0 0 0 −0.8 0 −5

√
6

6
0 1

2 0 0 0 0.35 0

0 0 1
2 0 −5

√
6

6 0 −0.8


.

(5.17)

The eigenvalues of A+AT are

−2.9267,−0.3547,−0.1764, 0, 0.0854, 0.7047

and 1.4176, thus 2λm(A) = 1.4176 > 0. If the ma-

trices Bi, (i = 1, 2, ...) are selected as a constant

matrix

B = diag(b1, b2, b3, b4, b5, b6, b7)

= (0, 0, 0,−0.5,−0.7,−0.7,−0.7)

then

β = max{(1 + b1)
2, ..., (1 + b7)

2} = 0.25. (5.18)

It follows from Corollary 4.1 that impulsive dis-

tance is

0 ≤ τ ≤ − lnα+ ln(0.25)

1.4176
. (5.19)

Now, taking α = 1 obtain

0 ≤ τ ≤ 0.9779. (5.20)

Figure 1 and Figure 2 illustrate the simulation

results of the SA system with τ = 0.5. In

these figures, time series responses corresponding

to quaternion parameters and angular velocities

demonstrate the appropriate performance of the

impulsive control with regard to the stabilization

and suppression of chaos. These responses are

comparable with solutions in Figure 3 and Fig-

ure 4 that show the time series corresponding to

Euler angles and angular velocities obtained by

the optimal control method [12]. In particular

the quick stability of angular velocities in impul-

sive control is considerable compared with ones

in the optimal control methods [10, 12].

6 Conclusion

In this paper, the impulsive control along with

quaternion parameters were applied on the SA

system when its attitude was confused by a dis-

turbed torque. Whilst this method can solve the

singularity problem in the numerical solution of

system,the simulation results obtained from this

method demonstrated its quick stability as for

achieving the equilibrim point of system com-

pared with other control methods.
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