وردش های فضایی- زمانی روزهای برفپوشان در پهنه شمال غرب ایران با استفاده از داده های دورسنجی
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیعباس کاشانی 1 , برومند صلاحی 2 * , امیرحسین حلبیان 3 , بتول زینالی 4
1 - گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی
2 - گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی
3 - گروه جغرافیا، دانشگاه پیام نور، تهران، ایران
4 - دانشیار گروه جغرافیای طبیعی، دانشکده ادبیات و علوم انسانی ، دانشگاه محقق اردبیلی ، اردبیل، ایران
کلید واژه: روزهای برفپوشان, سطوح برفپوشان, ارتفاع, سنجنده مادیس, شمال غرب ایران,
چکیده مقاله :
در این پژوهش وردشهای فضایی – زمانی روزهای برفپوشان (SCDs) در این منطقه با استفاده از دادههای نسخه ششم سنجنده مادیس تررا و مادیس آکوا بهصورت روزانه در بازه زمانی 2020-2003 واکاوی شد. بهمنظور کاهش اثر ابرناکی سه الگوریتم بر روی دادهها اعمال شد. برای الگوی رقومی ارتفاع، از مدل رقومی سطحی (DSM) سازمان اکتشافات فضایی ژاپن استفاده شد. ارتباط بین دو مؤلفه فنولوژیک برف-پوش (SCAs و SCDs) و پیوند شمار SCDs با مؤلفه توپوگرافیکی ارتفاع مورد بررسی قرار گرفت. یافتهها نشان از افزایش SCDs در ماههای نوامبر، دسامبر و ژانویه دارد. بیشینه SCDs در ژانویه مربوط به توده کوهستانی سبلان و سپس سهند میباشد. کاهش SCDs در ماههای بهاره و تابستانه نیز متأثر از دو عامل عرض جغرافیایی و ارتفاع میباشد. بیشینه مطلق SCDs در این منطقه با 160 روز در سال در بلندیهای سبلان مشاهده میشود. بررسی تغییرات روزهای برفپوشان در ماههای مارس و آوریل نشان از کاهش SCDs در طبقات ارتفاعی بلند دارد. درعینحال، الگوی افزایشی SCDs در نوامبر و دسامبر را در بسیاری از کمربندهای ارتفاعی نشان میدهد. واکاوی ارتباط SCAs و SCDs در ماههای مختلف مشخص کرد که در پهنههای دارای SCDs بیشتر (ارتفاعات) به سبب کاهش سطوح توپوگرافی، از SCAs کاسته شده است. ارتباط وردشهای SCDs با ارتفاع نیز نشان داد که کمینه SCDs در تمامی باندهای ارتفاعی (حتی ارتفاعات بالای 3500 متر با 4 روز) در اوت و بیشینه آن در دسامبر با 22 روز در ارتفاع 3500 متر روی داده است. SCDs با افزایش ارتفاع در مناطق کوهستانی 3500 تا 4000 متری، به دلیل افزایش شیب زمین و ناپایداری SC بر روی سطوح پرشیب کاهش مییابد.
In this research, the spatiotemporal variations of snow-covered days (SCDs) in this region were analyzed using the data of the sixth version of MODIS Terra and MODIS Aqua sensors on a daily basis in the period of 2003-2020. In order to reduce the cloud cover effect, three algorithms were applied to the data. For the digital elevation model, the Digital Surface Model (DSM) of the Japan Space Exploration Agency was used. The relation between two snow-cover phenological components (SCAs and SCDs) and the relation between the SCDs and the altitude were investigated. The findings show an increase in SCDs in the months of November, December, and January. Maximum SCDs are observed in January in Sabalan Mountain and then Sahand. The reduction of SCDs in the spring and summer months is also affected by the two factors of latitude and altitude. The absolute maximum of SCDs in this region is observed at 160 days/ year in the mountain of Sabalan. Examining the changes in SCDs in March and April shows a decrease in SCDs in high-altitude classes. At the same time, it shows the increasing pattern of SCDs in November and December at many altitude levels. Analysis of the relation between SCA and SCDs in different months illustrated that SCAs has decreased in regions with more SCDs (heights) due to the reduction of topographic areas. The relation of SCDs and altitude also showed that the minimum of SCDs occurred in all altitude levels (even altitudes above 3500 m with 4 days) in August and the maximum occurred in December with 22 days at the altitude of 3500 m. SCDs decrease with increasing altitude in mountainous areas of 3500 to 4000 m, due to the increase of land slope and instability of SC in steep areas.
Akyürek Z, Sorman A.Ü. 2002. Monitoring snow-covered areas using NOAA-AVHRR data in the eastern part of Turkey. Hydrological Sciences, 47: 243–252.
Alhossaini Almodaresi S.A, Hatami J, Sarkargar A. 2016. Calculating the physical properties of snow, using differential radar interferometry and Terra SAR-X and MODIS images. RS and GIS for Natural Resources, 7 (2): 59-76. (In Persian).
Brown R.D. 2000. Northern Hemisphere snow cover variability and change, 1915–97. Journal of Climate, 13: 2339–2355. DOI: https://doi.org/10.1175/1520-0442(2000)013<2339:NHSCVA>2.0.CO;2
Butt M.J, Bilal M. 2011. Application of snowmelt runoff model for water resource management. Hydrological Processes, 25: 3735–3747. Doi:https://doi.org/10.1002/hyp.8099
Dietz A.J, Kuenzer C, Conrad C. 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International journal of remote sensing, 34(11): 3879- 3902. Doi: https://doi.org/10.1080/01431161.2013.767480
Dietz A, Conrad C, Kuenzer C, Gesell G, Dech S. 2014. Identifying changing snow cover characteristics in central Asia between 1986 and 2014 from remote sensing data. Remote Sensing, 6(12): 12752- 12775. DOI: 10.3390/rs61212752
Foster J, Liston G, Koster R, Essery R, Behr H, Dumenil L, Verseghy D, Thompson, S, Pollard D, Cohen J. 1996. Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. Journal of Climate, 9: 409-426. DOI: https://doi.org/10.1175/1520-0442(1996)009<0409:SCASMI>2.0.CO;2
Foster J, Sun C, Walker J.P. Kelly R, Chang A, Dong J, Powell H. 2005. Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing of Environment, 94: 187–203. Doi: https://doi.org/10.1016/j.rse.2004.09.012
Gafurov A, Bardossy A. 2009. Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci, 13: 1361–1373. Doi: https://doi.org/10.5194/hess-13-1361-2009
Halabian, A.H, Solhi S. 2020. Spatiotemporal changes in snow-cover related to the land surface temperature over central Alborz. Physical Geography, 47: 53-75. Doi: 20.1001.1.20085656.1399.13.47.4.6 (In Persian).
Hall D, Foster J, Verbyla D, Klein A, Benson C. 1998. Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sensing of Environment, 66(2), 129-137. Doi: https://doi.org/10.1016/S0034-4257(98)00051-0
Jain S.K, Goswami A, Saraf A.K. 2008. Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions. International Journal of Remote Sensing, 29: 5863–5878. Doi: https://doi.org/10.1080/01431160801908129
Ke C, Liu X. 2014. Modis-observed spatial and temporal variation in snow cover in Xinjiang, China; Climate Research, 59:15-26. doi: 10.3354/cr01206
Keikhosrvai Kiany M.S, Masoudian S.A. 2017. Identification of snow reservoirs in Iran. Physical Geography Research Quarterly, 49 (3): 395-408. Doi: 10.22059/JPHGR.2017.212604.1006908 (In Persian).
Lemke P, Ren J, Alley R.B, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas,R.H, Zang T. 2007. Observations: changes in Snow, ice and frozen ground. In climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Eds.): 337–384 (Cambridge and New York: Cambridge University Press).
Mölg N, Rastner P, Irsara L, Notarnicola C, Steurer C, Zebisch M. 2010. Multi-temporal modis snow cover monitoring over the alpine regions for civil protection applications, Remote Sensing for Science. Education and Natural and Cultural Heritagein 30th EARSel symposium, 31st May–3rd June.
Notarnicola C. 2020. Hotspots of snow cover changes in global mountain regions over 2000–2018, Remote Sensing of Environment. 243(15): 111781. Doi: https://doi.org/10.1016/j.rse.2020.111781
Parajka J, Bloschi G. 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrological models. Journal of Hydrology, 358: 240-258. Doi: https://doi.org/10.1016/j.jhydrol.2008.06.006
Peng S, Piao S, Ciais P, Fang J. 2010. Change in winter snow depth and its impacts on vegetation in China. Global Change Biology, 16: 3004–3013. DOI: 10.1111/j.1365-2486.2010.02210.x
Pepe M, Brivio P.A, Rampini A, Rota Nodari F. Boschetti M. 2005. Snow cover monitoring in Alpine regions using ENVISAT optical data. International Journal of Remote Sensing, 26: 4661–4667. Doi: https://doi.org/10.1080/01431160500206635
Riggs G.A, Hall D.K. 2015. MODIS Snow Products Collection 6 User Guide, modis-snow-ice.gsfc.nasa.gov: 1-66.
Saavedra F.A, Kampf S.K, Fassnacht S.R, Sibold J.S. 2018. Changes in Andes Mountains snow cover from MODIS data 2000–2016. Cryosphere 12: 1027–1046. Doi: 10.5194/tc-2017-72, 2017
She J, Zhang Y, Li X, Chen Y. 2014. Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data‚ International journal of remote sensing, 35(1): 234- 252. DOI: 10.1080/01431161.2013.866296
Simpson J.J, Stitt J.R, Sienko M. 2001. Improved Estimates of the Areal Extent of Snow Cover from AVHRR Data. Journal of Hydrology, 204(1-4): 1-23. Doi: https://doi.org/10.1016/S0022-1694(97)00087-5
Sood V, Singh S, Taloor A.K, Prashar S, Kaur R. 2020. Monitoring and mapping of snow cover variability using topographically derived NDSI model over north Indian Himalayas during the period 2008–19. Applied Computing and Geosciences, 8 (2020) 100040: 1-9. Doi: https://doi.org/10.1016/j.acags.2020.100040
Takaku J, Tadono T, Tsutsui K. 2014. Generation of high-resolution global DSM from ALOS PRISM, The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 4: 243-248, ISPRS. Doi: https://doi.org/10.5194/isprsarchives-XL-4-243-2014
Vikhamar D, Solberg R. 2003. Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sensing of Environment, 88: 309–323. Doi: https://doi.org/10.1016/j.rse.2003.06.004
Wang X. Xie H. 2009. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. Journal of hydrology, 371(1-4): 192-200. Doi: https://doi.org/10.1016/j.jhydrol.2009.03.028
Wang X, Xie H, Liang T, Huang X. 2009. Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrological Processes: An International Journal, 23(3): 419- 429. DOI:10.1002/hyp.7151
Zhang G, Xie H, Yao T, Liang T, Kang S. 2012. Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010). Water resources research, 48: 1-22. Doi: https://doi.org/10.1029/2012WR011971
Zhang H, Zhang F, Zhang G, Che T, Yan W, Ye M, Ma N. 2019. Ground-based evaluation of MODIS snowcover product V6 across China: Implications for the selection of NDSI threshold. Science of the Total Environment 651: 2712–2726. Doi: https://doi.org/10.1016/j.scitotenv.2018.10.128
Zhao H, Fernandes R. 2009. Daily snow cover estimation from advanced very high- resolution radiometer polar pathfinder data over northern hemisphere land surfaces during 1982–2004. Journal of Geophysical Research, 114: 1–14. Doi: https://doi.org/10.1029/2008JD011272