بررسی سطح جنگل با استفاده از ماشینبردارپشتیبان و ارائه مدل پیشبینی سطح تغییرات
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیآرمین هاشمی 1 * , امین خادمی 2 , مرتضی معدنی پور کرمانشاهی 3 , بهروز کرد 4
1 - دانشیار گروه مهندسی جنگلداری، دانشگاه آزاد اسلامی واحد لاهیجان، لاهیجان، ایران
2 - استادیار گروه مهندسی فضای سبز، دانشگاه آزاد اسلامی واحد ملایر، ملایر، ایران
3 - استادیار گروه مهندسی محیط زیست، دانشگاه آزاد اسلامی واحد پرند، پرند، ایران
4 - استادیار گروه مهندسی فضای سبز، دانشگاه آزاد اسلامی واحد ملایر، ملایر، ایران
کلید واژه: تصاویر ماهوارهای, جنگلهای سیاهکل, ارزیابی تغییرات سطح جنگل, سلولهای خودکار- زنجیره مارکوف,
چکیده مقاله :
پیشینه و هدف با توجه به تخریب فزاینده در سطح اکوسیستمهای طبیعی، تعیین میزان و موقعیت وقوع تغییرات کاربری اراضی و پیشبینی روند آن در آینده میتواند اطلاعات ارزندهای را بهبرنامهریزان و مدیران ارایه دهد. در این تحقیق بهمنظور پایش تغییرات در حال حاضر و پیشبینی آن در آینده در محدوده سیاهکل ارزیابی و پیشبینی تغییرات با تصاویر لندست انجام شد. روشهای گوناگونی برای پیشبینی تغییرات کاربری اراضی وجود دارد. فرایندهای پیشبینی و مدلسازی تغییرات کاربری اراضی، از قبیل رشد و توسعه شهری، جنگلزدایی و غیره بهعنوان ابزاری توانمند در مدیریت منابع طبیعی و پایش تغییرات زیستمحیطی به شمار میآیند. این تغییرات نشاندهنده چگونگی تعاملات بشر با محیطزیست خود بوده و مدلسازی آن در تصمیمگیریها و برنامهریزیهای و مدلسازی آن در تصمیمگیریها و برنامهریزیهای کلان، تاثیرگذار است. در این تحقیق نیز با توجه به توانمندیهای بالای سنجش ازدور و ابزارهای مدلسازی و پیشبینی تغییرات با استفاده از سلولهای خودکار-زنجیره مارکوف در جنگلها در شمال ایران پرداخته شد.مواد و روشها در تحقیق حاضر، از تصاویر لندست 5، سنجنده TMسال 2000 و لندست 7 سنجنده ETM+ سال 2010 و لندست 8 سنجنده OLI سال 2018 استفاده شد. در مرحله پیشپردازش خطاهای موجود بر روی دادههای خام از قبیل خطاهای رادیومتری، اتمسفری، و هندسی تصحیح میگردد. توجـه بـه بررسیهای صورت گرفته و انطباق راههـای ارتبـاطی اسـتخراج شـده از نقشــه توپـوگرافی سـازمان نقشـهبــرداری بــا تصــویر ماهوارهای، این تصاویر فاقد خطای هندسی قابلتوجهی بود، امـا دارای خطای رادیومتریک بود که ابتدا تصحیح رادیومتریـک بـر روی تصویر مـاهوارهای بـا تبـدیل DN بـه رادیـانس و سـپس انعکــاس بــا اســتفاده از الگــوریتم فلاش در نــرم افــزار ENVI صورت گرفت رفع گردید. برای تهیه نمونـههـای تعلیمـی از برداشـتهـای زمینـی، نقشـههـای توپـوگرافی بـا مقیـاس 1/25000 سـازمان نقشهبرداری استفاده گردیـد. 8۴ نقطه بـرای کـاربری جنگـل، 7۶ نقطـه بـرای کـاربری جنگل تنک، 31 نقطه برای کاربری کشاورزی و 21 نقطه برای کاربری شهری برداشت شد. تکنیکهای طبقهبندی برای گروهبندی پیکسلها بهکار میروند تا بتوانند جزئیات پوششزمین را نشان دهند. پوشش زمین در پنج کلاسه جنگل متراکم، جنگل نیمه متراکم، جنگل تنک، منطقه شهری و منطقه کشاورزی طبقهبندی گردید. نرمافزار سنجش از دور ENVI چهار نوع کرنل (Kernel) برای ماشینبردار پشتیبان چندین روش طبقهبندی وجود دارد؛ خطی، چندجملهای، شعاعی و پیچشی، که با توجه به مطالعات بهتـرین کرنـل برای طبقهبندی کاربری اراضی روش کرنل شعاعی (RBF) استفاده گردید. از طبقهبندی ترکیب باندی مناسبی که بتوانـد ایـن کـلاسهـا را برای تفسیر بصری از هم جدا کند توسط پلات میـانگین طیفـی انتخاب شد. این عمل توسط شاخص ترکیب باندی OIF صورت پذیرفت. پـس از استخراج کـاربری هـای اراضـی به روش مـورد نظـر نتـایج به دست آمده دقت سنجی شدند. نقشههای تهیهشده کاربری اراضی، با نقاط GPS زمینی، نقشه وضع موجود منطقه مقایسه و با استفاده از ماتریس خطای تشکیلشده ضریب کاپا و دقت کلی آن به دست آمد، که از 2۰۰ نقطـه بـه صـورت تصادفی بر روی تصاویر ایجاد شد و کاربری این نقـاط توسـط بازدیــدهای صــحرایی و نقشــههــای توپوگرافی سازمان نقشهبرداری مشخص شد. نقشههای طبقهبندی کاربریهای تهیهشده، جهت مدلسازی و پایش تغییرات کاربری اراضی وارد نرمافزار Idrisi شد تا تغییرات کاربریها در سالهای موردمطالعه مدلسازی گردد. درجهت انجام مدلسازی تغییرات کـاربری اراضـی از مــدل LCM در محــیط نــرمافــزار Idrisi استفاده شد. مدل Markov-CA تلفیقی از سلولهای خودکار، زنجیره مارکوف و تخصیص چندمنظوره اراضی است. مدل مارکوف همچنین موقعیت هر کاربری را با تولید مجموعهای از تصاویر احتمال وضعیت از ماتریس احتمال انتقال نشان میدهد. در مرحله آخر از مدلسازی با استفاده از ماتریس مساحت انتقال در مدل CA مارکوف میتوان نقشه شبیهسازی شده از کاربری اراضی در آینده را به دست آورد. در پژوهش حاضر، از نقشه کاربری اراضی سال 2010 و 2018 استفاده شد تا نقشه سال 2028 پیشبینی شود. به منظور بررسی دقت پیشبینی توسط CA مارکوف با استفاده از نقشه کاربری سال 2000 و 2010، نقشه سال 2018 را پیشبینی کرده و با نقشهای که از طریق طبقهبندی نظارت شده برای این سال به دست آمده است مقایسه شد.نتایج و بحث ارزیابی صحت طبقهبندی با استفاده از شاخص ضریب کاپا و دقت کلی به دست آمد. ضریب کاپا و دقت کلی برای تصویر سال 2000، به ترتیب 0.88 و 0.89 و برای تصویر 2010، 0.91 و 0.92 و برای تصویر سال 2018، 0.93 و 0.95 بهدست آمد. تصاویر طبقهبندی شده وارد نرم افزار ایدریسی شده و به پایش تغییرات با LCM پرداخته شد. پایش تغییرات در مدل LCM نشان داد در طی سالهای 2000 تا 2018، بیشترین تغییرات مربوط به تبدیل کاربری جنگل نیمهمتراکم با مساحت 4104.27 هکتار بوده است. تغییرات کاربری شهری نیز در دورۀ مطالعه زیاد و به مقدار 148.14 هکتار افزایش داشته است. جدول احتمال تغییرات کاربریها در مدل مارکوف تولید و با نقشه تولیدی در این مرحله، برای سالهای مطالعاتی پیشبینی با مارکوف برای سالهای 2018 و 2028 نشان داد در سال 2028 مساحت کلاس شهری به 21293.1 هکتار افزایش یافته و مساحت کاربری با ارزش جنگل متراکم به 2189.97 هکتار کاهش مییابد.نتیجهگیری جهت جلوگیری از گسترش بیرویه شهرها، مناطق مسکونی و تخریب عرصههای جنگلی و پوششگیاهی باید اقدامات مدیریتی انجام شود و تصمیمات مدیریتی اتخاذ گردد. مقدار سطح جنگلهای متراکم و نیمهمتراکم در مناطق با شیب زیاد تا سال 2028 کاهش بیشتری مییابد. تغییرات کاربری شهری نیز در دورۀ مطالعه به مقدار 148.14 هکتار افزایش داشته است. نتایج بررسی مساحت کلاسهای پیشبینی نشان داد در سال 2028 مساحت کلاس شهری به 21293.1 هکتار افزایش یافته و مساحت کاربری با ارزش جنگل متراکم به 2189.97 کاهش مییابد. قابلیت مدل ماشینبردار در تعیین پوشش/کاربری زمین، پوشش گیاهی و پوشش جنگلی در مناطق مختلف به اثبات رسیده است. ابزار سنجش ازدور میتواند بهعنوان یک بازوی مهم در تولید اطلاعات درمدیریت منابعطبیعی باشد.
Background and Objective Due to the increasing degradation at the level of the natural ecosystem, the amount and location of land use changes and predicting its future growth trend, I can provide the information I need to planners and managers. In this study, in order to change the current changes and predict the future in the Siahkal range, forecasting and changing the nose were done with Landsat images. There are various methods for predicting land use change. Processes for predicting and modelling land use change, such as urban growth and development, deforestation, etc., are considered powerful tools in managing natural resources and changing the state of the environment. This change reflects how humans interact with their environment, and its modelling has had an impact on settlement and macro-planning. In this research, due to the high capabilities of remote sensing and modelling tools and predicting changes in change using automatic-Markov cells in forests in northern Iran.Materials and Methods In this research, Landsat 5 images, 2000 TM sensor, Landsat 7 ETM+ sensor 2010 and Landsat 8 OLI sensor 2018 are used. In the preprocessing stage, errors in raw data such as radiometric, atmospheric, geometric, etc. errors are corrected. Was significant but had a radiometric error. 84 points are used for forest use, 76 points for thin forest water, 31 points for consumption and 2 required sensitivities to indicate a specific level of land cover. Land cover is defined into five classes: dense forest, semi-dense forest, sparse forest, urban area and agricultural area. The ENVI Remote sensing Software defines four types of kernels for the support vector machine in the SVM classification section: Polynomial, Sigmoid torsion, and FBCTION (RBF). According to the best kernel studies for land use classification, the radial kernel (RBF) has been proposed. In the present study, this kernel was used for classification. The classification of the appropriate band composition that you want to separate these classes for visual interpretation was selected by the spectral mean plot. This is done by the complex OIF index. After the extraction of land uses by the method, the results were evaluated accurately. Maps are prepared by land use, then with the GPS position of the earth, the map of the situation in the visible area and using the formed error matrix of kappa weakness and its overall accuracy obtained for this work, 200 points are randomly created on the images. The use of these points was determined by field visits and topographic maps of the surveying organization. Land use classification models are prepared, for modelling and land use changes are entered into office software to design land use changes in the required years. Degree of land use change modelling The LCM model was used in the Idrisi software environment. The Markov-CA model is a combination of automated cells, Markov chains, and multi-purpose land allocation. The Markov model also shows each user by generating a set of status probability images from the transfer probability matrix. In the last step of the structural model, using the transfer area matrix in the CA Markov model, a simulated simulation of future land use can be obtained. In this research, the land use map of 2010 and 2018 was used to predict the 2028 map. And in order to accurately review the forecast by CA Markov using the user map for 2000 and 2010, the map for 2018 has been predicted and increased by the map obtained from the classified level for this year.Results and Discussion The classification accuracy test was obtained using the Kappa coefficient index and overall accuracy. Kappa coefficient and overall accuracy were 0.88 and 0.89 for the image of 2000, 0.91 and 0.92 for the image of 2010, and 0.93 and 0.95 for the image of 2018, respectively. The images are categorized as entered into the software and processed by changing the LCM. Changes in the LCM model showed that during the years 2000 to 2018, more changes were related to the conversion of semi-dense forest land with an area of 42104.27 hectares. Urban land use change has also increased in the years of many studies and amounted to 148.14 hectares. The table of the probability of land use changes in the Markov production model and with the production map at this stage, for the years of Markov forecast studies for 2018 and 2028 showed that in 2028 the urban class area increased to 21293.1 hectares and the valuable land use area of dense forest to 2189.97 hectares will be reduced.Conclusion In order to prevent the uncontrolled expansion of cities, residential areas and the destruction of forest areas and vegetation, management measures should be taken and management decisions should be made. The level of dense and semi-dense forests in areas with high slopes will decrease further by 2028. Urban land use changes have also increased in the study years and amounted to 148.14 hectares. The results of surveying the area of forecasting classes showed that in 2028, the area of urban classrooms will increase to 21293.1 hectares and the valuable land use area of dense forests will decrease to 2189.97. The ability of the vector machine model in determining land cover/land use, vegetation and forest cover in different regions of Iran has been proven by other researchers. Remote sensing tools can be an important arm in information production in natural resource management.
Abdalla M, Saunders M, Hastings A, Williams M, Smith P, Osborne B, Lanigan G, Jones MB. 2013. Simulating the impacts of land use in Northwest Europe on Net Ecosystem Exchange (NEE): The role of arable ecosystems, grasslands and forest plantations in climate change mitigation. Science of The Total Environment, 465: 325-336. doi:https://doi.org/10.1016/j.scitotenv.2012.12.030.
Arsanjani JJ, Kainz W, Mousivand AJ. 2011. Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. International Journal of Image and Data Fusion, 2(4): 329-345. doi:https://doi.org/10.1080/19479832.2011.605397.
Cabral P, Zamyatin A. 2009. Markov processes in modeling land use and land cover changes in Sintra-Cascais, Portugal. Dyna, 76(158): 191-198.
Chen C-F, Son N-T, Chang N-B, Chen C-R, Chang L-Y, Valdez M, Centeno G, Thompson CA, Aceituno JL. 2013. Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with Landsat imagery and a Markov chain model. Remote Sensing, 5(12): 6408-6426. doi:https://doi.org/10.3390/rs5126408.
Dixon B, Candade N. 2008. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing, 29(4): 1185-1206. doi:https://doi.org/10.1080/01431160701294661.
Eskandari S. 2019. Comparison of different algorithms for land cover mapping in sensitive habitats of Zagros using Sentinel-2 satellite image:(Case study: a part of Ilam province). Journal of RS and GIS for Natural Resources, 10(1): 72-87. (In Persian).
Gilks WR, Richardson S, Spiegelhalter D. 1995. Markov chain Monte Carlo in practice. CRC press. 512 p.
Jenerette GD, Wu J. 2001. Analysis and simulation of land-use change in the central Arizona – Phoenix region, USA. Landscape Ecology, 16(7): 611-626. doi:https://doi.org/10.1023/A:1013170528551.
Jiang X, Lin M, Zhao J. 2011. Woodland cover change assessment using decision trees, support vector machines and artificial neural networks classification algorithms. In: 2011 Fourth International Conference on Intelligent Computation Technology and Automation. IEEE, pp 312-315. doi:https://doi.org/310.1109/ICICTA.2011.1363.
Kavzoglu T, Colkesen I. 2009. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5): 352-359. doi:https://doi.org/10.1016/j.jag.2009.06.002.
Kumar S, Radhakrishnan N, Mathew S. 2014. Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2): 145-156. doi:https://doi.org/10.1080/19475705.2013.795502.
Lambin EF. 1994. Modelling Deforestation processes, a review. Research Report, Joint Research Center, Institute for Remote Sensing Applications; European Space Agency, Luxembourg.
Lee JK, Acharya TD, Lee DH. 2018. Exploring land cover classification accuracy of Landsat 8 image using spectral index layer stacking in hilly region of South Korea. Sensors and Materials, 30(12): 2927-2941. doi:https://doi.org/:10.18494/SAM.2018.1934.
Lin Y-P, Chu H-J, Wu C-F, Verburg PH. 2011. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. International Journal of Geographical Information Science, 25(1): 65-87. doi:https://doi.org/10.1080/13658811003752332.
Mas JF, Flores JJ. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3): 617-663. doi:https://doi.org/10.1080/01431160701352154.
Mas JF, Puig H, Palacio JL, Sosa-López A. 2004. Modelling deforestation using GIS and artificial neural networks. Environmental Modelling & Software, 19(5): 461-471. doi:https://doi.org/10.1016/S1364-8152(03)00161-0.
Merten B, Lambin E. 1997. Spatial modeling of tropical deforestation in southern Cameroon: spatial disaggregation of diverse deforestation processes. Applied Geography, 17(2): 143-162. doi:https://doi.org/10.1016/S0143-6228(97)00032-5.
Mondal MS, Sharma N, Garg PK, Kappas M. 2016. Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. The Egyptian Journal of Remote Sensing and Space Science, 19(2): 259-272. doi:https://doi.org/10.1016/j.ejrs.2016.08.001.
Pal M, Mather PM. 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20(7): 1215-1225. doi:https://doi.org/10.1016/j.future.2003.11.011.
Pontius GR, Malanson J. 2005. Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19(2): 243-265. doi:https://doi.org/10.1080/13658810410001713434.
Quintero Vázquez G, Solís-Moreno R, Pompa-García M, Villarreal-Guerrero F, Pinedo-Alvarez C, Pinedo-Alvarez A. 2016. Detection and projection of forest changes by using the Markov Chain Model and cellular automata. Sustainability, 8(3): 236. doi:https://doi.org/10.3390/su8030236.
Reddy CS, Singh S, Dadhwal V, Jha C, Rao NR, Diwakar P. 2017. Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126(1): 1-16. doi:https://doi.org/10.1007/s12040-016-0786-7.
Roy S, Farzana K, Papia M, Hasan M. 2015. Monitoring and prediction of land use/land cover change using the integration of Markov chain model and cellular automation in the Southeastern Tertiary Hilly Area of Bangladesh. International Journal of Sciences: Basic and Applied Research (IJSBAR), 24: 125-148.
Tang J, Wang L, Zhang S. 2005. Investigating landscape pattern and its dynamics in Daqing, China. International Journal of Remote Sensing, 26(11): 2259-2280. doi:https://doi.org/10.1080/01431160500099410.
Turner MG. 2005. Landscape ecology in North America: past, present, and future. Ecology, 86(8): 1967-1974. doi:https://doi.org/10.1890/04-0890.
Ye B, Bai Z. 2008// 2008. Simulating Land Use/Cover Changes of Nenjiang County Based on CA-Markov Model. In: Li D (ed) Computer And Computing Technologies In Agriculture, Volume I, Boston, MA. Springer US, pp 321-329. doi:https://doi.org/310.1007/1978-1000-1387-77251-77256_77235.
Yousef S, Tazeh M, Mirzaee S, Moradi HR, Tavangar S. 2011. Comparison of different classification algorithms in satellite imagery to produce land use maps (Case study: Noor city). Journal of RS and GIS for Natural Resources, 2(2): 15-24. (In Persian).
_||_Abdalla M, Saunders M, Hastings A, Williams M, Smith P, Osborne B, Lanigan G, Jones MB. 2013. Simulating the impacts of land use in Northwest Europe on Net Ecosystem Exchange (NEE): The role of arable ecosystems, grasslands and forest plantations in climate change mitigation. Science of The Total Environment, 465: 325-336. doi:https://doi.org/10.1016/j.scitotenv.2012.12.030.
Arsanjani JJ, Kainz W, Mousivand AJ. 2011. Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. International Journal of Image and Data Fusion, 2(4): 329-345. doi:https://doi.org/10.1080/19479832.2011.605397.
Cabral P, Zamyatin A. 2009. Markov processes in modeling land use and land cover changes in Sintra-Cascais, Portugal. Dyna, 76(158): 191-198.
Chen C-F, Son N-T, Chang N-B, Chen C-R, Chang L-Y, Valdez M, Centeno G, Thompson CA, Aceituno JL. 2013. Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with Landsat imagery and a Markov chain model. Remote Sensing, 5(12): 6408-6426. doi:https://doi.org/10.3390/rs5126408.
Dixon B, Candade N. 2008. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing, 29(4): 1185-1206. doi:https://doi.org/10.1080/01431160701294661.
Eskandari S. 2019. Comparison of different algorithms for land cover mapping in sensitive habitats of Zagros using Sentinel-2 satellite image:(Case study: a part of Ilam province). Journal of RS and GIS for Natural Resources, 10(1): 72-87. (In Persian).
Gilks WR, Richardson S, Spiegelhalter D. 1995. Markov chain Monte Carlo in practice. CRC press. 512 p.
Jenerette GD, Wu J. 2001. Analysis and simulation of land-use change in the central Arizona – Phoenix region, USA. Landscape Ecology, 16(7): 611-626. doi:https://doi.org/10.1023/A:1013170528551.
Jiang X, Lin M, Zhao J. 2011. Woodland cover change assessment using decision trees, support vector machines and artificial neural networks classification algorithms. In: 2011 Fourth International Conference on Intelligent Computation Technology and Automation. IEEE, pp 312-315. doi:https://doi.org/310.1109/ICICTA.2011.1363.
Kavzoglu T, Colkesen I. 2009. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5): 352-359. doi:https://doi.org/10.1016/j.jag.2009.06.002.
Kumar S, Radhakrishnan N, Mathew S. 2014. Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2): 145-156. doi:https://doi.org/10.1080/19475705.2013.795502.
Lambin EF. 1994. Modelling Deforestation processes, a review. Research Report, Joint Research Center, Institute for Remote Sensing Applications; European Space Agency, Luxembourg.
Lee JK, Acharya TD, Lee DH. 2018. Exploring land cover classification accuracy of Landsat 8 image using spectral index layer stacking in hilly region of South Korea. Sensors and Materials, 30(12): 2927-2941. doi:https://doi.org/:10.18494/SAM.2018.1934.
Lin Y-P, Chu H-J, Wu C-F, Verburg PH. 2011. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. International Journal of Geographical Information Science, 25(1): 65-87. doi:https://doi.org/10.1080/13658811003752332.
Mas JF, Flores JJ. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3): 617-663. doi:https://doi.org/10.1080/01431160701352154.
Mas JF, Puig H, Palacio JL, Sosa-López A. 2004. Modelling deforestation using GIS and artificial neural networks. Environmental Modelling & Software, 19(5): 461-471. doi:https://doi.org/10.1016/S1364-8152(03)00161-0.
Merten B, Lambin E. 1997. Spatial modeling of tropical deforestation in southern Cameroon: spatial disaggregation of diverse deforestation processes. Applied Geography, 17(2): 143-162. doi:https://doi.org/10.1016/S0143-6228(97)00032-5.
Mondal MS, Sharma N, Garg PK, Kappas M. 2016. Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. The Egyptian Journal of Remote Sensing and Space Science, 19(2): 259-272. doi:https://doi.org/10.1016/j.ejrs.2016.08.001.
Pal M, Mather PM. 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20(7): 1215-1225. doi:https://doi.org/10.1016/j.future.2003.11.011.
Pontius GR, Malanson J. 2005. Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19(2): 243-265. doi:https://doi.org/10.1080/13658810410001713434.
Quintero Vázquez G, Solís-Moreno R, Pompa-García M, Villarreal-Guerrero F, Pinedo-Alvarez C, Pinedo-Alvarez A. 2016. Detection and projection of forest changes by using the Markov Chain Model and cellular automata. Sustainability, 8(3): 236. doi:https://doi.org/10.3390/su8030236.
Reddy CS, Singh S, Dadhwal V, Jha C, Rao NR, Diwakar P. 2017. Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126(1): 1-16. doi:https://doi.org/10.1007/s12040-016-0786-7.
Roy S, Farzana K, Papia M, Hasan M. 2015. Monitoring and prediction of land use/land cover change using the integration of Markov chain model and cellular automation in the Southeastern Tertiary Hilly Area of Bangladesh. International Journal of Sciences: Basic and Applied Research (IJSBAR), 24: 125-148.
Tang J, Wang L, Zhang S. 2005. Investigating landscape pattern and its dynamics in Daqing, China. International Journal of Remote Sensing, 26(11): 2259-2280. doi:https://doi.org/10.1080/01431160500099410.
Turner MG. 2005. Landscape ecology in North America: past, present, and future. Ecology, 86(8): 1967-1974. doi:https://doi.org/10.1890/04-0890.
Ye B, Bai Z. 2008// 2008. Simulating Land Use/Cover Changes of Nenjiang County Based on CA-Markov Model. In: Li D (ed) Computer And Computing Technologies In Agriculture, Volume I, Boston, MA. Springer US, pp 321-329. doi:https://doi.org/310.1007/1978-1000-1387-77251-77256_77235.
Yousef S, Tazeh M, Mirzaee S, Moradi HR, Tavangar S. 2011. Comparison of different classification algorithms in satellite imagery to produce land use maps (Case study: Noor city). Journal of RS and GIS for Natural Resources, 2(2): 15-24. (In Persian).