تشخیص و استخراج درختان نخل از تصاویر ماهواره ای با قدرت تفکیک مکانی بالای گوگل ارث بر مبنای شبکههای یادگیری عمیق باقیمانده
محورهای موضوعی : زیرساخت اطلاعات مکانی و طبقه بندی
مصطفی کابلی زاده
1
*
,
کاظم رنگزن
2
,
محمد عباسی
3
1 - گروه سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید چمران اهواز
2 - گروه سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید چمران اهواز
3 - گروه سنجش از دور و GIS
کلید واژه: شبکه عصبی کانولوشنال, یادگیری ماشین, تشخیص خودکار, استخراج اهداف,
چکیده مقاله :
شناسایی موقعیت درختان اولین گام جهت مدیریت فضای سبز، باغها و جنگلها است. تهیه نقشه موقعیت درختان میتواند با عملیات زمینی نقشهبرداری که نیاز به هزینه و زمان زیادی دارد یا با استفاده از تصاویر هوایی یا ماهوارهای انجام شود. در این پژوهش از تصاویر ماهوارهای با قدرت تفکیک مکانی بالای گوگل ارث برای تشخیص و استخراج درختان نخل با توجه به نقش و اهمیت درخت نخل در مناطق جنوبی ایران استفاده شده است، اما تشخیص خودکار درخت از تصاویر ماهوارهای یک چالش است. در این راستا روشهای یادگیری عمیق به عنوان یک راهحل مهم برای استخراج اشیا از تصاویر مطرح هستند. در این تحقیق از روشهای یادگیری عمیق باقیمانده با تعداد لایههای 18، 34 و 50 استفاده شده است. ابتدا بیش از 3000 نمونه تصویر در دو کلاس حاوی درخت نخل و بدون درخت نخل با ابعاد 64 در 64 پیکسل بریده شده و سپس مدلها با 80 درصد نمونهها برای یادگیری و 20 درصد برای اعتبارسنجی با 30 دوره تکرار و دقت بالای 99 درصد برای هر سه مدل آموزش داده شده است. مدل آموزش دیده بر روی 500 نمونه تست اجرا شده و نتایج ارزیابی هرسه مدل نشان داد که معیار دقت بیش از 0.96 و معیار بازیابی برابر 1 و معیار F1Score بیش از 0.98 است. اجرای مدلها بر روی تصاویر ماهوارهای گوگل ارث با حرکت پنجره 64 در 64 پیکسل با گام 16 پیکسل و سپس اعمال روش سرکوب غیرحداکثری نشان میدهد که میتوان از تصاویر ماهوارهای سامانه گوگل ارث برای تهیه نقشه موقعیت درختان نخل استفاده نمود. با توجه به زمان پردازش و امکان برآورد بهتر تعداد و استخراج موقعیت درختان نخل، مدل یادگیری عمیق باقیمانده با 34 لایه پیشنهاد شد.
Identifying the location of trees is the first step to manage green spaces, gardens and forests. The preparation of the location map of the trees can be done by ground mapping operations, which require a lot of money and time, or by using aerial or satellite images. In this research, satellite images with the high spatial resolution of Google Earth have been used to detect and extract palm trees, considering the role and importance of palm trees in the southern regions of Iran, but automatic recognition of trees from satellite images is a challenge. In this regard, deep learning methods are considered as an important solution for extracting objects from images. In this research, residual deep learning methods with the number of layers 18, 34 and 50 have been used. First, more than 3000 image samples were cut in two classes containing palm trees and without palm trees with dimensions of 64 x 64 pixels, then the models were trained with 80% samples for learning and 20% for validation with 30 epochs. The training accuracy of the models has been above 99%. The trained model was implemented on 500 test samples and the evaluation results of all three models show that the precision is more than 0.96, the recall is equal to 1, and the F1Score is more than 0.98. Running the models on Google Earth satellite images by moving the 64 x 64 pixel window with a step of 16 pixels and applying the non maximum suppression method shows that the satellite images of the Google Earth system can be used to prepare a map of palm trees. Considering the processing time and the possibility of better estimating the number and extracting the position of palm trees, the residual deep learning model with 34 layers is suggested.
1. Ahl R, Hogland J, Brown S. 2019. A Comparison of Standard Modeling Techniques Using Digital Aerial Imagery with National Elevation Datasets and Airborne LiDAR to Predict Size and Density Forest Metrics in the Sapphire Mountains MT, USA. Ijgi 8 (1), 24. doi:10.3390/ijgi8010024.
2. Bulatov D, Wayand I, Schilling H. 2016. Automatic tree-crown detection in challenging scenarios International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 41 575–582.
3. Chong K L, Kanniah K D. Pohl C, Tan K P. 2017. A review of remote sensing applications for oil palm studies.Geo-Spat. Inf. Sci. 20, 184–200, doi:10.1080/10095020.2017.1337317.
4. He K, Zhang X, Ren S, Sun J. 2015. Deep Residual Learning for Image Recognition. In: arXiv e-prints. arXiv: 1512.03385.
5. Hu J, Zhang Y, Zhao D, Yang G, Chen F, Zhou C, Chen W. 2022. A robust deep learning approach for the quantitative characterization and clustering of peach tree crowns based on UAV images. Ieee T Geosci Remote, 1-14.
6. Hu R, Bournez E, Cheng S, Jiang H, Nerry F, Landes T, Saudreau M, Kastendeuch P, Najjar G, Colin J, Yan G. 2018. Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path lengthdistribution model. ISPRS J. Photogramm. Remote Sens. 144, 357–368.
7. Iglovikov V, Mushinskiy S, Osin V. 2017. Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition. arXiv:1706.06169.
8. Jintasuttisak T, Edirisinghe E, Elbattay A. 2022. Deep neural network-based date palm tree detection in drone imagery. Comput Electron Agr, 192, 106560.
9. Li W, Dong R, Fu H, Yu L. 2019. Large-scale oil palm tree detection from high-resolution satellite images using two-stage convolutional neural networks Remote Sens. 11 11.
10. Li W, Fu H, Yu L. 2017. Deep convolutional neural network based large-scale oil palmtree detection for high-resolution remote sensing images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), FortWorth, TX, USA, 23–28 July 2017; pp. 846–849, doi:10.1109/IGARSS.2017.8127085.
11. Lin J, Kroll C N, Nowak D J, Greenfield E J. 2019. A review of urban forest modeling: Implications for management and future research. Urban For. Urban Green. 43, 126366 https://doi.org/10.1016/j.ufug.2019.126366.
12. Maschler J, Atzberger C, Immitzer M. 2018. Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data Remote Sens. 10 1218.
13. Mckinnon T, Hoff P. 2017. Comparing RGB-Based Vegetation Indices with NDVI For Drone Based Agricultural Sensing 1–8.
14. Natesan S, Armenakis C, Vepakomma U. 2019. Resnet-based tree species classification using UAV images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W13: 475–481.
15. Olivares R J L. 2019. PALM TREE IMAGE CLASSIFICATION A convolutional and 40 machine learning approach.
16. Osco L P, Marcato Junior J, Marques Ramos A P. 2021. de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.;Pistori, H.; Gonçalves, W.N.; Li, J., A review on deep learning in UAV remote sensing. Int J Appl Earth, 102, 102456.
17. Ponti M A, Ribeiro L S F, Nazare T S, Bui T, Collomosse J. 2017. Everything you wanted to know about deep learning for computer vision but were afraid to ask. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), pp. 17–41. doi:10.1109/SIBGRAPI-T.2017.12.
18. Ren S. et al. 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–1149. doi: 10.1109/TPAMI.2016.2577 031.
19. Srestasathiern P, Rakwatin P. 2014. Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery. In: Remote Sensing 6, pp. 9749–9774. DOI: 10.3390/rs6109749.
20. Torres-Sánchez J, López-Granados F, Serrano N, Arquero O and Peña J M. 2015. High-throughput 3-D monitoring of agricultural-tree plantations with Unmanned Aerial Vehicle (UAV) technology PLoS One 10 6.
21. Tuominen S, Näsi R, Honkavaara E, Balazs A, Hakala T, Viljanen N, Pölönen I, Saari H, Ojanen H. 2018. Assessment of classifiers and remote sensing features of hyperspectral imagery and stereo-photogrammetric point clouds for recognition of tree species in a forest area of high species diversity Remote Sens. 10 714.
22. Wang X, Wang Y, Zhou C, Yin L, Feng X. 2021. Urban forest monitoring based on multiple features at the single tree scale by UAV. Urban For. Urban Green. 58, 126958 https://doi.org/10.1016/j.ufug.2020.126958.
23. Weinstein B G, Marconi S, Bohlman S, Zare A, White E. 2019. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sensing 11, 1309.
24. Yao L, Liu T, Qin J, Lu N, Zhou C. 2021. Tree counting with high spatial-resolution satellite imagery based on deep neural networks. Ecol Indic, 125, 107591.
25. Zhu X X, Tuia D, Mou L, Xia G, Zhang L, Xu F, Fraundorfer F. 2017. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 5, 8–36, doi:10.1109/MGRS.2017.2762307.