پایش و پیش بینی تغییرات کاربری اراضی با استفاده از تصاویر ماهواره ای لندست به روش سلول های خودکار و زنجیره مارکوف (مورد مطالعه: منطقه عباسآباد، استان مازندران)
محورهای موضوعی : زیرساخت اطلاعات مکانی و طبقه بندیعامر نیک پور 1 * , حمید عمونیا 2 , الهه نورپسندی 3
1 - دانشیار گروه جغرافیا و برنامه ریزی شهری، دانشکده علوم انسانی و اجتماعی، دانشگاه مازندران، ایران
2 - دانش آموخته دکتری ژئومورفولوژی و مدیریت محیطی، دانشگاه تربیت مدرس، تهران، ایران
3 - دانشجوی کارشناسی ارشد، جغرافیا و برنامه ریزی شهری، دانشکده علوم انسانی و اجتماعی، دانشگاه مازندران، بابلسر، ایران
کلید واژه: عباسآباد, پیشبینی, پایش, تصاویر ماهوارهای, تغییرات کاربری اراضی,
چکیده مقاله :
پیشینه و هدف امروزه تغییرات کاربری اراضی در بسیاری از کشورها به چالش مهمی تبدیلشده است که اثرات فراوانی بر محیط زیست می گذارند. بر همین اساس بررسی تغییرات کاربری اراضی در مقیاس های مختلف به عنوان یکی از موضوعات مهم در مدیریت درست منابع طبیعی و تغییرات زیست محیطی در سطوح مختلف مطرح است. لذا آگاهی داشتن از تغییرات کاربری و بررسی علل و عوامل آنها در چند دوره زمانی و پیشبینی تغییرات کاربری اراضی در آینده می توان برنامه ریزی درستی را برای کاهش اثرات نامطلوب انجام داد که همین امر مورد توجه برنامه ریزان و مدیران شهری قرارگرفته است و به آنها در برنامه ریزی کاربری اراضی کمک شایانی می کند. همچنین تبدیل کاربری ها به یکدیگر و تغییر کاربری پوشش گیاهی به پهنه ساخته شده به عنوان موضوع مهم شناخته میشود. بر این اساس هدف این پژوهش پایش و پیش بینی تغییرات کاربری و پوشش اراضی منطقه شهری عباسآباد در آینده است؛ که با استفاده از این تغییرات میتوان اقدامات مناسب مدیریتی برای حفظ و احیا اراضی انجام داد.مواد و روش هاپیش بینی تغییرات کاربری اراضی از تلفیق مدل سلول های خودکار و زنجیره مارکوف در منطقه شهری عباس آباد با استفاده از تصاویر سنجنده TM و OLI ماهواره های لندست 8 و 5 اخذشده از سایت USGS انجام شد. چهار کلاس کاربری که شامل کلاس پهنه ساخته شده با کد شماره 1، کلاس پوشش گیاهی با کد شماره 2، کلاس منابع آبی با کد شماره 3 و کلاس اراضی بایر با کد شماره 4 برای منطقه شهری عباسآباد تفکیک شدند که این طبقه بندی از روش USGS اخذشده است. بهمنظور استخراج کلاس های کاربری اراضی بعد از چک نمودن چند روش نهایتاً از روش طبقهبندی شیءگرا و الگوریتم ماشین بردار پشتیبان (SVM) به دلیل کارایی بهتر استفاده گردید. ارزیابی صحت طبقه بندی تصاویر ماهواره ای بابیان دقت کلی و ضریب کاپا برای سه دوره زمانی انجام شد که هریک از این نقشه های طبقه بندی شده از طریق ترسیم ماتریس خطا مورد ارزیابی قرارگرفتهاند که برای تهیه این ماتریس از 250 نقطه نمونه استفاده شد و نوع نمونه برداری نیز به صورت نمونه برداری طبقه ای بود. همچنین برای مشخص شدن تغییرات کاربری اراضی در سال 2030 از نقشه های طبقه بندی شده استفاده شد و با کمک نرم افزارTerrSet تغییرات صورت گرفته در کلاس ها و درصد آنها به دست آمد و با استفاده از مدل CA-MARKOV تغییرات کلاس های مختلف براساس ماتریس احتمال انتقال پیش بینی شد.نتایج و بحثنتایج پژوهش در طی سالهای 1997، 2006 و 2017 بیانگر این است که پهنه ساخته شده روند افزایشی داشته است و کاربری های پوشش گیاهی، اراضی بایر و منابع آبی دارای روند کاهشی بودهاند و 23279هکتار از اراضی منطقه را پهنه ساخته شده به خود اختصاص داده است. ضریب کاپا محاسبه شده در این ارزیابی برای سال های 1997، 2006 و 2017 به ترتیب 0.86، 0.89 و 0.89 است. مدل پیش بینی زنجیره مارکوف با دقت بالای 85 درصد بیان کرد که روند تغییرات کاربری اراضی برای سال 2030 همانند سال های قبل خواهد بود و این نشان دهنده این است که تبدیل و تغییر کاربری ها همانند قبل پیش خواهد رفت و ذکر این نکته هم ضروری است که کاربری های همسان پوشش گیاهی به پوشش گیاهی در طی سال های 2006 تا 2017 هم بیشترین مساحت را شامل میشود و این نشان دهنده این است که در این منطقه، پوشش گیاهی همچنان پابرجاست و کمتر دچار تغییرات شده است.نتیجه گیری خروجی نقشه پیشبینی 13 ساله برای سال 2030 در این پژوهش از دقت مناسب مدل CA-MARKOV حکایت دارد. علاوه بر این خروجی نشان می دهد میتوان به این روش برای برنامه ریزی کوتاهمدت اعتماد نمود. این نقشه های پیش بینی می توانند راهنمای خوبی برای مدیران و برنامه ریزان شهری باشند. برای دست یافتن به نتایج بهتر پیشنهاد می شود که از تلفیق مدل سلول های خودکار و زنجیره مارکوف برای پایش و پیش بینی تغییرات در سطح کشور استفاده شود. نتایج به دست آمده از این پژوهش علاوه بر اینکه در کاهش حجم داده های ورودی کمک فراوانی می کند، بلکه در پردازش تصاویر طبقه بندی شده و در پیشبینی آن ها برای آینده هم نقش بسزایی دارد.
Background and ObjectiveToday, land use change in many countries has become an important challenge that has many effects on the environment. Accordingly, the study of land use change at different scales is one of the important issues in the proper management of natural resources and environmental change at various levels. Therefore, being aware of land use changes and investigating their causes and factors in several time periods, and predicting land use changes in the future can be properly planned to reduce adverse effects, which has been considered by planners and city managers. They help in land use planning. Also, converting land uses to each other and changing the use of vegetation is known as an important issue. Therefore, the purpose of this study is to monitor and predict land use changes and land cover in Abbasabad urban area in the future; Using these changes, appropriate management measures can be taken to preserve and rehabilitate lands. Materials and Methods A combination of an automated cell model and Markov chain in the Abbasabad urban area was used to predict land use change; The relevant images were taken from the TM and OLI sensors of the Landsat 8 and 5 satellites at the USGS site. Four user classes, including zone class built with code number 1, vegetation class with code number 2, water resources class with code number 3, and barren land class with code number 4, were separated for Abbasabad urban area. Obtained USGS. In order to extract land use classes, after checking several methods, object-oriented classification method and support vector machine (SVM) algorithm were used due to better efficiency. Evaluation of Babian satellite imagery classification The overall accuracy and kappa coefficient were performed for three periods of time. Each of these classified maps was evaluated by drawing an error matrix. 250 sample points were used to prepare this matrix. The type of sampling was stratified sampling. Also, to determine land use changes in 2030, classified maps were used and with the help of TerrSet software, changes made in classes and their percentages were obtained, and using the CA-MARKOV model, changes of different classes based on matrices. The possibility of transfer was predicted. Results and Discussion The results during 1997, 2006, and 2017 show that the constructed area has an increasing trend and the uses of vegetation, barren lands, and water resources have a decreasing trend and 23279 hectares of lands in the region are built area dedicated. The kappa coefficient calculated for 1997, 2006, and 2017 is 0.86, 0.89, and 0.89, respectively. Markov chain forecasting model with 85% accuracy stated that the trend of land use change for 2030 will be the same as in previous years, and this indicates that the conversion and change of land uses will proceed as before, and it is necessary to mention this point that the identical uses of vegetation to vegetation cover the largest area during the years 2006 to 2017, and this shows that in this area, vegetation is still stable and has undergone less changes. Conclusion The output of the 13-year forecast map for 2030 in this study indicates the appropriate accuracy of the CA-MARKOV model. In addition, this output shows that this method can be trusted for short-term planning. These forecast maps can be a good guide for managers and urban planners. To achieve better results, it is recommended to use a combination of automated cell model and Markov chain to monitor and predict changes nationwide. The results of this study, in addition to helping to reduce the volume of input data, but also in the processing of classified images and in predicting them for the future.
Benito PR, Cuevas JA, de la Parra RB, Prieto F, Del Barrio JG, de Zavala Gironés MÁ. 2010. Land use change in a Mediterranean metropolitan region and its periphery: assessment of conservation policies through CORINE Land Cover data and Markov models. Forest Systems, 19(3): 315-328. doi:https://doi.org/10.5424/fs/2010193-8604.
Du Y, Philippe MT, Josef C. 2002. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82(1): 123-134. doi:https://doi.org/10.1016/S0034-4257(02)00029-9.
Eastman JR. 2012. IDRISI Selva tutorial. IDRISI production. Worcester: Clark Labs-Clark University. http://dx.doi.org/10.4236/jgis.2015.73024.
Esch T, Asamer H, Bachofer F, Balhar J, Boettcher M, Boissier E, d'Angelo P, Gevaert CM, Hirner A, Jupova K. 2020. Digital world meets urban planet–new prospects for evidence-based urban studies arising from joint exploitation of big earth data, information technology and shared knowledge. International Journal of Digital Earth, 13(1): 136-157. doi:https://doi.org/10.1080/17538947.2018.1548655.
Ghosh P, Mukhopadhyay A, Chanda A, Mondal P, Akhand A, Mukherjee S, Nayak S, Ghosh S, Mitra D, Ghosh T. 2017. Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment, 5: 64-77. doi:https://doi.org/10.1016/j.rsase.2017.01.005.
Hadjimitsis DG, Papadavid G, Agapiou A, Themistocleous K, Hadjimitsis M, Retalis A, Michaelides S, Chrysoulakis N, Toulios L, Clayton C. 2010. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Natural Hazards and Earth System Sciences, 10(1): 89-95. doi:https://doi.org/10.5194/nhess-10-89-2010.
Hajibigloo M, Sheikh Vb, Memarian H, komaki CB. 2020. Three-dimensional calibration of land use changes using the integrated model of Markov chain automatic cell in Gorgan-rud river basin. Journal of RS and GIS for Natural Resources, 11(2): 1-26. http://girs.iaubushehr.ac.ir/article_674554.html?lang=en. (In persian).
Hernández-Guzmán R, Ruiz-Luna A, González C. 2019. Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico. Remote Sensing Applications: Society and Environment, 13: 318-327. doi:https://doi.org/10.1016/j.rsase.2018.12.005.
Koohestani N, Rastegar S, Heidari G, Joybari SS, Amirnejad H. 2020. Monitoring and predicting the trend of changing rangelands using Satelite images and CA-Markov model (Case study: Noor-rood basin, Mazandaran proince). Journal of RS and GIS for Natural Resources, 11(3): 1-21. http://girs.iaubushehr.ac.ir/article_674923.html. (In Persian).
Mertens B, Lambin EF. 2000. Land-cover-change trajectories in southern Cameroon. Annals of the association of American Geographers, 90(3): 467-494. doi:https://doi.org/10.1111/0004-5608.00205.
Mohammadi S, Habashi K, Pormanafi S. 2018. Monitoring and prediction land use/land cover changes and its relation to drought (Case study: sub-basin Parsel B2, Zayandeh Rood watershed). Journal of RS and GIS for Natural Resources, 9(1): 24-39. http://girs.iaubushehr.ac.ir/article_540414_en.html. (In Persian).
Munthali MG, Mustak S, Adeola A, Botai J, Singh SK, Davis N. 2020. Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sensing Applications: Society and Environment, 17: 100276. doi:https://doi.org/10.1016/j.rsase.2019.100276.
Patino JE, Juan CD. 2013. A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 37: 1-17. doi:https://doi.org/10.1016/j.compenvurbsys.2012.06.003.
Rahnama MR, Rousta M. 2013. Analysis of change in land use and maintaining and preserving green spaces (gardens) of the Jahrom city for a sustainable development Journal of Geographical Research, 28(2): 113-126. http://georesearch.ir/article-111-475-fa.html. (In Persian).
Rawat JS, Manish K. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1): 77-84. doi:https://doi.org/10.1016/j.ejrs.2015.02.002.
Sang L, Chao Z, Jianyu Y, Dehai Z, Wenju Y. 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3): 938-943. doi:https://doi.org/10.1016/j.mcm.2010.11.019.
Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T. 2015. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environmental Processes, 2(1): 61-78. doi:https://doi.org/10.1007/s40710-015-0062-x.
Stow DA, Chen DM. 2002. Sensitivity of multitemporal NOAA AVHRR data of an urbanizing region to land-use/land-cover changes and misregistration. Remote Sensing of Environment, 80(2): 297-307. doi:https://doi.org/10.1016/S0034-4257(01)00311-X.
Suykens JA, Vandewalle J. 1999. Least squares support vector machine classifiers. Neural processing letters, 9(3): 293-300. doi:https://doi.org/10.1023/A:1018628609742.
Szuster WB, Qi C, Michael B. 2011. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2): 525-532. doi:https://doi.org/10.1016/j.apgeog.2010.11.007.
Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S. 2012. Monitoring urbanization in mega cities from space. Remote Sensing of Environment, 117: 162-176. doi:https://doi.org/10.1016/j.rse.2011.09.015.
Tiwari A, Jain K. 2014. GIS Steering smart future for smart Indian cities. International Journal of Scientific and Research Publications, 4(8): 442-446.
Traore A, Mawenda J, Komba AW. 2018. Land-cover change analysis and simulation in conakry (Guinea), using hybrid cellular-automata and markov model. Urban Science, 2(2): 39. doi:https://doi.org/10.3390/urbansci2020039.
Varga OG, Robert Gilmore P, Sudhir Kumar S, Szilárd S. 2019. Intensity Analysis and the Figure of Merit’s components for assessment of a Cellular Automata – Markov simulation model. Ecological Indicators, 101: 933-942. doi:https://doi.org/10.1016/j.ecolind.2019.01.057.
Wang SQ, Zheng XQ, Zang XB. 2012. Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13: 1238-1245. doi:https://doi.org/10.1016/j.proenv.2012.01.117.
_||_Benito PR, Cuevas JA, de la Parra RB, Prieto F, Del Barrio JG, de Zavala Gironés MÁ. 2010. Land use change in a Mediterranean metropolitan region and its periphery: assessment of conservation policies through CORINE Land Cover data and Markov models. Forest Systems, 19(3): 315-328. doi:https://doi.org/10.5424/fs/2010193-8604.
Du Y, Philippe MT, Josef C. 2002. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82(1): 123-134. doi:https://doi.org/10.1016/S0034-4257(02)00029-9.
Eastman JR. 2012. IDRISI Selva tutorial. IDRISI production. Worcester: Clark Labs-Clark University. http://dx.doi.org/10.4236/jgis.2015.73024.
Esch T, Asamer H, Bachofer F, Balhar J, Boettcher M, Boissier E, d'Angelo P, Gevaert CM, Hirner A, Jupova K. 2020. Digital world meets urban planet–new prospects for evidence-based urban studies arising from joint exploitation of big earth data, information technology and shared knowledge. International Journal of Digital Earth, 13(1): 136-157. doi:https://doi.org/10.1080/17538947.2018.1548655.
Ghosh P, Mukhopadhyay A, Chanda A, Mondal P, Akhand A, Mukherjee S, Nayak S, Ghosh S, Mitra D, Ghosh T. 2017. Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment, 5: 64-77. doi:https://doi.org/10.1016/j.rsase.2017.01.005.
Hadjimitsis DG, Papadavid G, Agapiou A, Themistocleous K, Hadjimitsis M, Retalis A, Michaelides S, Chrysoulakis N, Toulios L, Clayton C. 2010. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Natural Hazards and Earth System Sciences, 10(1): 89-95. doi:https://doi.org/10.5194/nhess-10-89-2010.
Hajibigloo M, Sheikh Vb, Memarian H, komaki CB. 2020. Three-dimensional calibration of land use changes using the integrated model of Markov chain automatic cell in Gorgan-rud river basin. Journal of RS and GIS for Natural Resources, 11(2): 1-26. http://girs.iaubushehr.ac.ir/article_674554.html?lang=en. (In persian).
Hernández-Guzmán R, Ruiz-Luna A, González C. 2019. Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico. Remote Sensing Applications: Society and Environment, 13: 318-327. doi:https://doi.org/10.1016/j.rsase.2018.12.005.
Koohestani N, Rastegar S, Heidari G, Joybari SS, Amirnejad H. 2020. Monitoring and predicting the trend of changing rangelands using Satelite images and CA-Markov model (Case study: Noor-rood basin, Mazandaran proince). Journal of RS and GIS for Natural Resources, 11(3): 1-21. http://girs.iaubushehr.ac.ir/article_674923.html. (In Persian).
Mertens B, Lambin EF. 2000. Land-cover-change trajectories in southern Cameroon. Annals of the association of American Geographers, 90(3): 467-494. doi:https://doi.org/10.1111/0004-5608.00205.
Mohammadi S, Habashi K, Pormanafi S. 2018. Monitoring and prediction land use/land cover changes and its relation to drought (Case study: sub-basin Parsel B2, Zayandeh Rood watershed). Journal of RS and GIS for Natural Resources, 9(1): 24-39. http://girs.iaubushehr.ac.ir/article_540414_en.html. (In Persian).
Munthali MG, Mustak S, Adeola A, Botai J, Singh SK, Davis N. 2020. Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sensing Applications: Society and Environment, 17: 100276. doi:https://doi.org/10.1016/j.rsase.2019.100276.
Patino JE, Juan CD. 2013. A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 37: 1-17. doi:https://doi.org/10.1016/j.compenvurbsys.2012.06.003.
Rahnama MR, Rousta M. 2013. Analysis of change in land use and maintaining and preserving green spaces (gardens) of the Jahrom city for a sustainable development Journal of Geographical Research, 28(2): 113-126. http://georesearch.ir/article-111-475-fa.html. (In Persian).
Rawat JS, Manish K. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1): 77-84. doi:https://doi.org/10.1016/j.ejrs.2015.02.002.
Sang L, Chao Z, Jianyu Y, Dehai Z, Wenju Y. 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3): 938-943. doi:https://doi.org/10.1016/j.mcm.2010.11.019.
Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T. 2015. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environmental Processes, 2(1): 61-78. doi:https://doi.org/10.1007/s40710-015-0062-x.
Stow DA, Chen DM. 2002. Sensitivity of multitemporal NOAA AVHRR data of an urbanizing region to land-use/land-cover changes and misregistration. Remote Sensing of Environment, 80(2): 297-307. doi:https://doi.org/10.1016/S0034-4257(01)00311-X.
Suykens JA, Vandewalle J. 1999. Least squares support vector machine classifiers. Neural processing letters, 9(3): 293-300. doi:https://doi.org/10.1023/A:1018628609742.
Szuster WB, Qi C, Michael B. 2011. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2): 525-532. doi:https://doi.org/10.1016/j.apgeog.2010.11.007.
Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S. 2012. Monitoring urbanization in mega cities from space. Remote Sensing of Environment, 117: 162-176. doi:https://doi.org/10.1016/j.rse.2011.09.015.
Tiwari A, Jain K. 2014. GIS Steering smart future for smart Indian cities. International Journal of Scientific and Research Publications, 4(8): 442-446.
Traore A, Mawenda J, Komba AW. 2018. Land-cover change analysis and simulation in conakry (Guinea), using hybrid cellular-automata and markov model. Urban Science, 2(2): 39. doi:https://doi.org/10.3390/urbansci2020039.
Varga OG, Robert Gilmore P, Sudhir Kumar S, Szilárd S. 2019. Intensity Analysis and the Figure of Merit’s components for assessment of a Cellular Automata – Markov simulation model. Ecological Indicators, 101: 933-942. doi:https://doi.org/10.1016/j.ecolind.2019.01.057.
Wang SQ, Zheng XQ, Zang XB. 2012. Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13: 1238-1245. doi:https://doi.org/10.1016/j.proenv.2012.01.117.