کاربرد روشهای تصمیمگیری چندمعیاره در ارزیابی کاربری اراضی برای تعیین محل دفن زبالههای شهری
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیخدیجه صفری 1 , سید علی جوزی 2 , سحر رضایان 3
1 - دانشجوی دکتری گروه مدیریت محیط زیست، دانشکده علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد گروه مهندسی محیط زیست، دانشکده علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار گروه مهندسی محیط زیست، دانشکده فنی و مهندسی، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
کلید واژه: زاهدان, مکاندفن, روشهای تصمیم گیری چند معیاره, پسماندهای شهری, ارزیابی توان اکولوژیکی,
چکیده مقاله :
پیشینه و هدف امروزه با گسترش سریع شهرها و افزایش چشمگیر حجم اطلاعاتی که برای مدیریت شهری باید پردازش شوند، استفاده از GIS در برنامهریزی شهری توسعه یافته است. این پژوهش با استفاده از عملکرد ابزارهای پشتیبانی تصمیم، فرآیند تحلیل شبکه (ANP) و ترکیب خطی وزنی (WLC)، جهت وزندهی معیارها و روشهای استانداردسازی نقشهها بر اساس منطق بولین و فازی را در قالب تصمیمگیری چند معیاره، بهترین سایت دفن زباله شهر زاهدان را بررسی میکند. سپس با استفاده از پهنهبندی در تعیین مکانهای مناسب دفن پسماند شهری در شهرستان زاهدان استفاده گردد که در حال حاضر با مشکل محل دفن پسماند روبهرو است. در تحقیق حاضر با شناسایی عوامل مؤثر در محدودیت مکانیابی محل دفن پسماند شهری شهرستان زاهدان و با تعیین اولویت فاکتورهای تأثیرگذار، معیارهای بهینه مکانیابی با در نظر گرفتن توان اکولوژیکی منطقه مشخص و در راستای واقعیشدن برنامهریزی، بر مبنای متغیرهای موجود در مکانیابی شهرستان زاهدان، با استفاده از روشهای تصمیمگیری چند معیاره (MCDM)، نسبت به وزندهی و اولویتبندی و ارزیابی معیارها و محدودیتها اقدام گردید. مدل در نظر گرفتهشده برای عرصه تحت مطالعه، نمایانگر اولویتهای ایجاد انواع کاربریها جهت تصمیمگیریها، در جریان مطالعات ارزیابی و بهمنظور سنجش قابلیتهای شهرستان زاهدان برای کاربریهای توسعه شهری است.مواد و روش ها این تحقیق کاربردی از روش ارزیابی چند معیاره در محیط GIS، برای تعیین و تخمین پتانسیل مکانهای مطلوب دفن پسماند در شهرستان زاهدان ارائه شده است. بدین ترتیب با تهیه پرسشنامه به روش دلفی، 18 زیرمعیار در دو گروه معیار، 1) معیار اکولوژیکی (شیب، ارتفاع، خاک، فرسایش، گسل، بارش، باد، جهت، آبهای سطحی، آبهای زیرزمینی، پوشش گیاهی، کاربری اراضی و زمین شناسی)، 2) معیار اجتماعی، اقتصادی (فاصله از شهر، روستا، معدن، فرودگاه و جاده) تعیین و با نظر کارشناسان (خبرگان) و با استفاده از فرآیند تحلیل شبکه (ANP) در نرمافزار Super decision وزن های هر معیار محاسبه و در مرحله بعد لایههای هر کدام از این معیارهای ارزیابی و در پایگاه داده مبتنی بر ArcGIS آمادهسازی و تحت عنوان نقشه های معیار ذخیره شد و در نهایت با استفاده از روش WLC تلفیق کلیه لایهها انجام و نقشه نهایی که مشخص کننده مکانهای مناسب دفن در شهرستان زاهدان استخراج گردید.نتایج و بحث با فازی سازی 18 لایه (معیار) با منطق فازی و نیز اعمال محدودیتها با منطق بولین، نقشه های 18 لایه تهیه و با تلفیق لایهها با روش ترکیب خطی وزنی از رایجترین روشها در تصمیمگیری چند معیاره، نقشه نهایی مکانیابی دفن بدست آمده است. در راستای توزیع فضایی مکانهای مناسب دفن شهرستان زاهدان، با توجه به 5 کلاس طبقه بندی، مشخص شد که بیشترین سطح منطقه را طبقه فاقد توان (99.76 درصد) و مناطق مناسب برای دفن پسماند در مجموع حدود 0.231 درصد است و هیچ بخشی از شهر زاهدان برای کاربری دفن پسماندها دارای توان خیلی زیاد و توان زیاد نیست. بهطوریکه در اطراف شهر نصرت آباد، محدودههایی با توان خیلی زیاد و توان زیاد مشاهده میشود. همچنین مشخص شد که عمدتاً اراضی دارای توان، اعم از توان کم و توان متوسط، در حواشی شهرهای زاهدان و نصرت آباد متمرکز میباشند. در منطقه دارای توان، 22 واحد جهت شهر زاهدان و 35 واحد برای شهر نصرت آباد شناسایی گردید.نتیجه گیری مرور ادبیات تحقیق میتوان بیان کرد از نقاط قوت استفاده از روش تصمیمگیری چند معیاره، جهت مکانیابی دفن پسماندها، فراهم کردن امکان استفاده از یک مجموعه ابزار قوی تعاملی برای تنظیم جبران پذیری و جبران کردن بین معیارها است، که اجازه ارزیابی سریع روابط بین معیارها را میدهد. نقاط قوت دیگر این روش شامل توانایی یکی کردن مجموعه دادههای همگن مانند معیارهای کیفی و کمی با استفاده از دانش تخصصی، انعطافپذیری لازم برای انتخاب معیارهای خاص برای مناطق مورد مطالعه مختلف یا مسائل مختلف مطرح شده، برای اجرای یک یا یک گروه تصمیمگیری، انعطافپذیری برای تغییر سطح اهمیت معیار و آزادی برای سطوح قابل قبول ریسکهای تصمیمگیری میباشد. با مقایسه پیشینه استفاده این روش در مکانهای دیگر میتوان نزدیکی نتایج و مناسببودن روش برای کاربری دفن را نتیجه گرفت، بنابراین پیشنهاد میشود برای شهرستانهای دیگر استان نیز ارزشیابی توان سرزمین با روش بکارگرفته شده در این تحقیق مورد بررسی قرار گیرد. به هر حال، از آنجایی که مکانیابی دفن پسماند به معیارهای مختلف و به نفوذ نظرات عمومی و سیاسی در رابطه با تجزیه و تحلیل علمی بستگی دارد، فرض این بود که این روش، پتانسیل قابلتوجهی برای حمایت از پیچیدگیهای تصمیم گیری کاربردهای دنیای واقعی را دارد.
Background and Objective Recently, the use of GIS in urban planning has been developed with the rapid expansion of cities and the dramatic increase in the amount of information that must be processed for urban management. This study investigates the best landfill site for Zahedan city using the performance of decision support tools, Network analysis process (ANP) and Weighted linear combination (WLC) for weighting criteria, and map standardization methods based on Boolean and Fuzzy logic in the form of multi-criteria decision-making. Indeed, based on the variables' impacts in locating the waste landfill in Zahedan city, using multi-criteria decision-making methods (MCDM) to weigh and prioritize and evaluate the effective factors are considered to identify the optimal location regarding the ecological potential of the region. The proposed model indicates the priorities of creating different types of decision-making during the evaluation analysis of the development capabilities of the study area.Materials and Methods Developing a multi-criteria evaluation method in a GIS environment to determine and estimate the capability of desirable landfills in Zahedan city is considered. Thus, by preparing a questionnaire by the Delphi method, 18 sub-criteria in two groups of criteria: 1. ecological criteria (Slope, altitude, soil, erosion, fault, precipitation, wind, direction, surface water, groundwater, vegetation, land use, and geology); 2. Socio-economic criteria (Distance from city, village, mine, airport, and road) is determined, and regarding expert's perceptions and using Network Analysis Process (ANP) in super decision software, weights of each criterion were calculated; and in the next step, the layers of criteria were evaluated in a database based on ArcGIS and stored as benchmark maps; and finally using the WLC method were considered to combine all layers to extract the map of a suitable landfill site in Zahedan city.Results and Discussion By fuzzifying 18 layers (criteria) with fuzzy logic and also applying constraints with Boolean logic, 18-layer maps are prepared and by merging layers with one of the common methods of weight linear composition in Multi-criteria decision, the final landfill location map has been explored. In terms of the spatial distribution of suitable landfills in Zahedan city, according to 5 categories of classification, it was found that the highest level of the region is categorized as the low capable class (99.76%) and suitable areas for landfilling in total is around 0.231, also no part of the Zahedan city has a very high or high capability for using as the landfill location, while around the city of Nusratabad, areas with very high and high capability are observed. It was also found that mainly lands with both low and medium capability, are located in the suburban areas of Zahedan and Nusratabad, with 22 units for the city of Zahedan and 35 units for the city of Nusratabad.Conclusion Reviewing the research literature shows the strengths of using a multi-criteria decision-making method to locate landfills, enabling the use of a robust set of interactive tools to regulate compensability between criteria, which allows a quick assessment of the relationship between the criteria. Other strengths of this method include the ability to integrate homogeneous data sets such as qualitative and quantitative criteria using specialized knowledge, the flexibility to select specific criteria for different study areas or various issues, to implement one or more decision-making groups, the flexibility to change the level of criterion importance and different choices for acceptable levels of decision-making risks. By comparing the final outputs related to other areas, it can be concluded that the final results are close and the method is suitable for landfill locations everywhere. Therefore, it is suggested that for other areas, the evaluation of land capability should be examined with the proposed method in this research. However, since the location of landfills by different criteria and the influence of public opinion depends on scientific analysis, we assume that this method has significant potential to support the decision-making complexities of real-world applications.
Aghsaei H, Souri B. 2017. Landfill site selection using spatial information technologies a case study in Sanandaj municipality, Western Iran. Environmental Research, 8(15): 216-229. (In Persian).
Ajibade FO, Olajire OO, Ajibade TF, Nwogwu NA, Lasisi KH, Alo AB, Owolabi TA, Adewumi JR. 2019. Combining multicriteria decision analysis with GIS for suitably siting landfills in a Nigerian state. Environmental and Sustainability Indicators, 3-4: 100010. https://doi.org/10.1016/j.indic.2019.100010.
Aliani H, BabaieKafaky S, Saffari A, Monavari SM. 2017. Land evaluation for ecotourism development—an integrated approach based on Fuzzy, WLC, and ANP methods. International Journal of Environmental Science and Technology, 14(9): 1999-2008. https://doi.org/10.1007/s13762-017-1291-5.
Amiri F. 2022. Solid waste disposal site selection using geospatial information technologies and fuzzy analytic hierarchy process (FAHP): a case study in Bandar Bushehr, Iran. GeoJournal: 1-22. https://doi.org/10.1007/s10708-022-10760-y.
Amiri F, Babaei F, Tabatabaie T. 2023. Site Selection of Kangan Municipal Solid Waste Landfill by Using a Fuzzy Analytic Hierarchy Process (FAHP) and GIS. Journal of Applied researches in Geographical Sciences, 23(69): 343-362. http://dorl.net/dor/20.1001.1.22287736.1300.0.0.150.3. (In Persian).
Asadolahi Z, Mobarghei N, Keshtkar M. 2020. Integration of population forecasting in providing decision support system for municipal solid waste landfill siting (Case study: Qazvin province). Journal of RS and GIS for Natural Resources, 11(4): 1-24. dorl.net/dor/20.1001.1.26767082.1399.11.4.1.1. (In Persian).
Baniasadi R, Ahmadizade SS, Etebari B, Qomi A. 2017. Landfill site selection with emphasis on environmental and economical factors in northern Iran (Case study: Astara Township). Journal of Environmental Science and Technology, 19(5): 405-415. https://doi.org/10.22034/jest.2017.11344. (In Persian).
Barzekar G, Aziz A, Mariapan M, Ismail MH. 2011. Delphi technique for generating criteria and indicators in monitoring ecotourism sustainability in Northern forests of Iran: Case study on Dohezar and Sehezar Watersheds. Folia ForestaliaPolonica Series, 53(2): 130-141. https://depot.ceon.pl/handle/123456789/5389.
Beskese A, Demir HH, Ozcan HK, Okten HE. 2015. Landfill site selection using fuzzy AHP and fuzzy TOPSIS: a case study for Istanbul. Environmental Earth Sciences, 73(7): 3513-3521. https://doi.org/10.1007/s12665-014-3635-5.
Chen Y, Yu J, Khan S. 2010. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12): 1582-1591. https://doi.org/10.1016/j.envsoft.2010.06.001.
Eastman JR. 2001. Guide to GIS and image processing volume, vol 2. Clark Labs. 144 pp.
Eskandari M, Homaee M, Mahmoodi S, Pazira E, Van Genuchten MT. 2015. Optimizing landfill site selection by using land classification maps. Environmental Science and Pollution Research, 22(10): 7754-7765. https://doi.org/10.1007/s11356-015-4182-7.
Govind Kharat M, Kamble SJ, Raut RD, Kamble SS. 2016. Identification and evaluation of landfill site selection criteria using a hybrid Fuzzy Delphi, Fuzzy AHP and DEMATEL based approach. Modeling Earth Systems and Environment, 2(2): 98. https://doi.org/10.1007/s40808-016-0171-1.
Han Z, Ma H, Shi G, He L, Wei L, Shi Q. 2016. A review of groundwater contamination near municipal solid waste landfill sites in China. Science of The Total Environment, 569-570: 1255-1264. https://doi.org/10.1016/j.scitotenv.2016.06.201.
Ismail K, Ali S, Bennui A, Techato K, Jutidamrongphan W. 2019. Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resources, Conservation and Recycling, 149: 220-235. https://doi.org/10.1016/j.resconrec.2019.05.027.
Jahromi Samari H, Hosseinzadehasl H. 2012. Landfill site selection in Bandarabbas by analytical hierarchy process model. Human & Environment, 10(22): 65-76. https://he.srbiau.ac.ir/article_3451.html?lang=en. (In Persian).
Jamshidi-Zanjani A, Rezaei M. 2017. Landfill site selection using combination of fuzzy logic and multi-attribute decision-making approach. Environmental Earth Sciences, 76(13): 448. https://doi.org/10.1007/s12665-017-6774-7.
Jiao S, Zhang X, Xu Y. 2017. A review of Chinese land suitability assessment from the rainfall-waterlogging perspective: Evidence from the Su Yu Yuan area. Journal of Cleaner Production, 144: 100-106. https://doi.org/10.1016/j.jclepro.2016.12.162.
Kahvand M, Gheitarani N, Khanian M, Ghadarjani R. 2015. Urban solid waste landfill selection by SDSS. Case study: Hamadan. Environment Protection Engineering, 41(2): 47-56.
Karimi H, Herki B, Gardi SQ, Galalizadeh S, Hossini H, Mirzaei K, Pirsaheb M. 2022. Site selection and environmental risks assessment of medical solid waste landfill for the City of Kermanshah-Iran. International Journal of Environmental Health Research, 32(1): 155-167. https://doi.org/10.1080/09603123.2020.1742876.
Khosravi Y, Ashjaei H. 2017. Landfill site selection for urban hysteresis of Qazvin City using the AHP in ArcGIS software. Human & Environment, 15(4): 51-63. (In Persian).
Majumdar A, Hazra T, Dutta A. 2017. Landfill site selection by AHP based multi-criteria decision making tool: a case study in Kolkata, India. Journal of The Institution of Engineers (India): Series A, 98: 277-283. https://doi.org/10.1007/s40030-017-0211-5.
Mallick J. 2021. Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in Asir Region Saudi Arabia. Sustainability, 13(3): 1538. https://doi.org/10.3390/su13031538.
Malmir M, Zarkesh MMK, Monavari SM, Jozi SA, Sharifi E. 2016. Analysis of land suitability for urban development in Ahwaz County in southwestern Iran using fuzzy logic and analytic network process (ANP). Environmental Monitoring and Assessment, 188: 1-23. https://doi.org/10.1007/s10661-016-5401-5.
Mirzaei M, Salman Mahiny A, Mirkarimi SH. 2014. Site selection of landfill by using analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) (Case study: landfill of Golpayegan township). Journal of Natural Environment, 67(1): 105-119. https://doi.org/10.22059/JNE.2014.51003. (In Persian).
Ni-Bin C, Parvathinathan G, Breeden JB. 2008. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1): 139-153. https://doi.org/10.1016/j.jenvman.2007.01.011.
Pasalari H, Nodehi RN, Mahvi AH, Yaghmaeian K, Charrahi Z. 2019. Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. MethodsX, 6: 1454-1466. https://doi.org/10.1016/j.mex.2019.06.009.
Saaty TL, Vargas LG. 2006. Decision making with the analytic network process. Springer. XVII, 363 p. https://doi.org/10.1007/978-1-4614-7279-7.
Samaniego J, Pérez-Murcia M, Bustamante M, Pérez-Espinosa A, Paredes C, López M, López-Lluch D, Gavilanes-Terán I, Moral R. 2017. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. Journal of Cleaner Production, 141: 1349-1358. https://doi.org/10.1016/j.jclepro.2016.09.178.
Tahmoorian F, Khabbaz H. 2020. Performance comparison of a MSW settlement prediction model in Tehran landfill. Journal of Environmental Management, 254: 109809. https://doi.org/10.1016/j.jenvman.2019.109809.
Thyberg KL, Tonjes DJ. 2017. The environmental impacts of alternative food waste treatment technologies in the US. Journal of Cleaner Production, 158: 101-108. https://doi.org/10.1016/j.jclepro.2017.04.169.
Vosoogh A, Baghvand A, Karbassi A, Nasrabadi T. 2017. Landfill site selection using pollution potential zoning of aquifers by modified DRASTIC method: Case study in Northeast Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41: 229-239. https://doi.org/10.1007/s40996-017-0054-3.
Yildirim V, MEMİŞOĞLU T, Bediroglu Ş, Colak H. 2018. Municipal solid waste landfill site selection using multi-criteria decision making and GIS: case study of Bursa province. Journal of Environmental Engineering and Landscape Management, 26(2). http://dx.doi.org/10.3846/16486897.2017.1364646.
Yousefi H, Javadzadeh Z, Noorollahi Y, Yousefi-Sahzabi A. 2018. Landfill Site selection using a multi-criteria decision-making method: a case study of the Salafcheghan special economic zone, Iran. Sustainability, 10(4): 1107. https://doi.org/10.3390/su10041107.
_||_Aghsaei H, Souri B. 2017. Landfill site selection using spatial information technologies a case study in Sanandaj municipality, Western Iran. Environmental Research, 8(15): 216-229. (In Persian).
Ajibade FO, Olajire OO, Ajibade TF, Nwogwu NA, Lasisi KH, Alo AB, Owolabi TA, Adewumi JR. 2019. Combining multicriteria decision analysis with GIS for suitably siting landfills in a Nigerian state. Environmental and Sustainability Indicators, 3-4: 100010. https://doi.org/10.1016/j.indic.2019.100010.
Aliani H, BabaieKafaky S, Saffari A, Monavari SM. 2017. Land evaluation for ecotourism development—an integrated approach based on Fuzzy, WLC, and ANP methods. International Journal of Environmental Science and Technology, 14(9): 1999-2008. https://doi.org/10.1007/s13762-017-1291-5.
Amiri F. 2022. Solid waste disposal site selection using geospatial information technologies and fuzzy analytic hierarchy process (FAHP): a case study in Bandar Bushehr, Iran. GeoJournal: 1-22. https://doi.org/10.1007/s10708-022-10760-y.
Amiri F, Babaei F, Tabatabaie T. 2023. Site Selection of Kangan Municipal Solid Waste Landfill by Using a Fuzzy Analytic Hierarchy Process (FAHP) and GIS. Journal of Applied researches in Geographical Sciences, 23(69): 343-362. http://dorl.net/dor/20.1001.1.22287736.1300.0.0.150.3. (In Persian).
Asadolahi Z, Mobarghei N, Keshtkar M. 2020. Integration of population forecasting in providing decision support system for municipal solid waste landfill siting (Case study: Qazvin province). Journal of RS and GIS for Natural Resources, 11(4): 1-24. dorl.net/dor/20.1001.1.26767082.1399.11.4.1.1. (In Persian).
Baniasadi R, Ahmadizade SS, Etebari B, Qomi A. 2017. Landfill site selection with emphasis on environmental and economical factors in northern Iran (Case study: Astara Township). Journal of Environmental Science and Technology, 19(5): 405-415. https://doi.org/10.22034/jest.2017.11344. (In Persian).
Barzekar G, Aziz A, Mariapan M, Ismail MH. 2011. Delphi technique for generating criteria and indicators in monitoring ecotourism sustainability in Northern forests of Iran: Case study on Dohezar and Sehezar Watersheds. Folia ForestaliaPolonica Series, 53(2): 130-141. https://depot.ceon.pl/handle/123456789/5389.
Beskese A, Demir HH, Ozcan HK, Okten HE. 2015. Landfill site selection using fuzzy AHP and fuzzy TOPSIS: a case study for Istanbul. Environmental Earth Sciences, 73(7): 3513-3521. https://doi.org/10.1007/s12665-014-3635-5.
Chen Y, Yu J, Khan S. 2010. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12): 1582-1591. https://doi.org/10.1016/j.envsoft.2010.06.001.
Eastman JR. 2001. Guide to GIS and image processing volume, vol 2. Clark Labs. 144 pp.
Eskandari M, Homaee M, Mahmoodi S, Pazira E, Van Genuchten MT. 2015. Optimizing landfill site selection by using land classification maps. Environmental Science and Pollution Research, 22(10): 7754-7765. https://doi.org/10.1007/s11356-015-4182-7.
Govind Kharat M, Kamble SJ, Raut RD, Kamble SS. 2016. Identification and evaluation of landfill site selection criteria using a hybrid Fuzzy Delphi, Fuzzy AHP and DEMATEL based approach. Modeling Earth Systems and Environment, 2(2): 98. https://doi.org/10.1007/s40808-016-0171-1.
Han Z, Ma H, Shi G, He L, Wei L, Shi Q. 2016. A review of groundwater contamination near municipal solid waste landfill sites in China. Science of The Total Environment, 569-570: 1255-1264. https://doi.org/10.1016/j.scitotenv.2016.06.201.
Ismail K, Ali S, Bennui A, Techato K, Jutidamrongphan W. 2019. Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resources, Conservation and Recycling, 149: 220-235. https://doi.org/10.1016/j.resconrec.2019.05.027.
Jahromi Samari H, Hosseinzadehasl H. 2012. Landfill site selection in Bandarabbas by analytical hierarchy process model. Human & Environment, 10(22): 65-76. https://he.srbiau.ac.ir/article_3451.html?lang=en. (In Persian).
Jamshidi-Zanjani A, Rezaei M. 2017. Landfill site selection using combination of fuzzy logic and multi-attribute decision-making approach. Environmental Earth Sciences, 76(13): 448. https://doi.org/10.1007/s12665-017-6774-7.
Jiao S, Zhang X, Xu Y. 2017. A review of Chinese land suitability assessment from the rainfall-waterlogging perspective: Evidence from the Su Yu Yuan area. Journal of Cleaner Production, 144: 100-106. https://doi.org/10.1016/j.jclepro.2016.12.162.
Kahvand M, Gheitarani N, Khanian M, Ghadarjani R. 2015. Urban solid waste landfill selection by SDSS. Case study: Hamadan. Environment Protection Engineering, 41(2): 47-56.
Karimi H, Herki B, Gardi SQ, Galalizadeh S, Hossini H, Mirzaei K, Pirsaheb M. 2022. Site selection and environmental risks assessment of medical solid waste landfill for the City of Kermanshah-Iran. International Journal of Environmental Health Research, 32(1): 155-167. https://doi.org/10.1080/09603123.2020.1742876.
Khosravi Y, Ashjaei H. 2017. Landfill site selection for urban hysteresis of Qazvin City using the AHP in ArcGIS software. Human & Environment, 15(4): 51-63. (In Persian).
Majumdar A, Hazra T, Dutta A. 2017. Landfill site selection by AHP based multi-criteria decision making tool: a case study in Kolkata, India. Journal of The Institution of Engineers (India): Series A, 98: 277-283. https://doi.org/10.1007/s40030-017-0211-5.
Mallick J. 2021. Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in Asir Region Saudi Arabia. Sustainability, 13(3): 1538. https://doi.org/10.3390/su13031538.
Malmir M, Zarkesh MMK, Monavari SM, Jozi SA, Sharifi E. 2016. Analysis of land suitability for urban development in Ahwaz County in southwestern Iran using fuzzy logic and analytic network process (ANP). Environmental Monitoring and Assessment, 188: 1-23. https://doi.org/10.1007/s10661-016-5401-5.
Mirzaei M, Salman Mahiny A, Mirkarimi SH. 2014. Site selection of landfill by using analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) (Case study: landfill of Golpayegan township). Journal of Natural Environment, 67(1): 105-119. https://doi.org/10.22059/JNE.2014.51003. (In Persian).
Ni-Bin C, Parvathinathan G, Breeden JB. 2008. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1): 139-153. https://doi.org/10.1016/j.jenvman.2007.01.011.
Pasalari H, Nodehi RN, Mahvi AH, Yaghmaeian K, Charrahi Z. 2019. Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. MethodsX, 6: 1454-1466. https://doi.org/10.1016/j.mex.2019.06.009.
Saaty TL, Vargas LG. 2006. Decision making with the analytic network process. Springer. XVII, 363 p. https://doi.org/10.1007/978-1-4614-7279-7.
Samaniego J, Pérez-Murcia M, Bustamante M, Pérez-Espinosa A, Paredes C, López M, López-Lluch D, Gavilanes-Terán I, Moral R. 2017. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. Journal of Cleaner Production, 141: 1349-1358. https://doi.org/10.1016/j.jclepro.2016.09.178.
Tahmoorian F, Khabbaz H. 2020. Performance comparison of a MSW settlement prediction model in Tehran landfill. Journal of Environmental Management, 254: 109809. https://doi.org/10.1016/j.jenvman.2019.109809.
Thyberg KL, Tonjes DJ. 2017. The environmental impacts of alternative food waste treatment technologies in the US. Journal of Cleaner Production, 158: 101-108. https://doi.org/10.1016/j.jclepro.2017.04.169.
Vosoogh A, Baghvand A, Karbassi A, Nasrabadi T. 2017. Landfill site selection using pollution potential zoning of aquifers by modified DRASTIC method: Case study in Northeast Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41: 229-239. https://doi.org/10.1007/s40996-017-0054-3.
Yildirim V, MEMİŞOĞLU T, Bediroglu Ş, Colak H. 2018. Municipal solid waste landfill site selection using multi-criteria decision making and GIS: case study of Bursa province. Journal of Environmental Engineering and Landscape Management, 26(2). http://dx.doi.org/10.3846/16486897.2017.1364646.
Yousefi H, Javadzadeh Z, Noorollahi Y, Yousefi-Sahzabi A. 2018. Landfill Site selection using a multi-criteria decision-making method: a case study of the Salafcheghan special economic zone, Iran. Sustainability, 10(4): 1107. https://doi.org/10.3390/su10041107.