اثرات زیست محیطی فعالیت گسل میناب و چالش های زمین ساختی
محورهای موضوعی : فصلنامه زمین شناسی محیط زیست
کلید واژه: اثرات زیست محیطی, گسل میناب, چالش های زمین ساختی, مورفومتری.,
چکیده مقاله :
بر اساس نتایج تحقیقات و شاخص های زمین ساختی، منطقه در وضعیت زمین ساختی متوسط قرار دارد. از عوامل تهدید کننده در منطقه می توان به تاثیر گسل میناب بر بالا آمدگی منطقه اشاره کرد که باعث افزایش شیب منطقه در قسمت های شمالی می شود. این امر به نوبه خود باعث افزایش دبی آب و طغیان رودخانه ها در نواحی پایین دست شده و باعث ناپایداری شیب و رانش زمین در منطقه می شود. هدف از این پژوهش ارائه بینش های ارزشمندی در مورد تأثیر ساختارهای زمین شناسی منطقه بر روی چالش های زمین شناختی و زیست محیطی آینده می باشد. با محاسبه پارامترهای مورفوتکتونیکی و شاخص های مورفومتری به منظور برآورد مخاطرات زمین ساختی گسل میناب به نقش آن بر روی مخاطرات زمین شناختی-زیست محیطی پرداخته شده است. بر این اساس تاثیر گسل میناب بر بالا آمدن منطقه می تواند شیب منطقه را در قسمت های شمالی افزایش داده و منجر به افزایش جریان آب و طغیان رودخانه ها در نواحی پایین دست شود. این امر می تواند باعث ناپایداری شیب و رانش زمین در منطقه شود. از نظر خطرات تکتونیکی، وجود گسل میناب و فعالیت تکتونیکی مرتبط با آن می تواند منجر به خطرات زمین ساختی مختلف از جمله زمین لرزه شود. در نتیجه، در حالی که گسل میناب و فعالیت های زمین ساختی مرتبط با آن می تواند چالش های زیست محیطی قابل توجهی را ایجاد کند، با برنامه ریزی صحیح و درک شرایط زمین ساختی، می توان این چالش ها را کاهش داد و به توسعه پایدار منطقه کمک کرد.
Based on the research results and tectonic indicators, the region is in an average tectonic state. One of the threatening factors in the region is the effect of the Minab fault on the rise of the region, which increases the slope of the region in the northern parts. This, in turn, causes an increase in water flow and flooding of rivers in the downstream areas and causes slope instability and landslides in the region. The purpose of this research is to provide valuable insights about the influence of the geological structures of the region on the future geological and environmental challenges. By calculating morphotectonic parameters and morphometric indices in order to estimate the tectonic risks of Minab fault, its role on geological-environmental risks has been discussed. Based on this, the effect of the Minab fault on the rise of the region can increase the slope of the region in the northern parts and lead to an increase in water flow and river flooding in the downstream areas. This can cause slope instability and landslides in the region. In terms of tectonic risks, the existence of the Minab fault and its related tectonic activity can lead to various tectonic risks, including earthquakes. As a result, while the Minab fault and related tectonic activities can create significant environmental challenges, with proper planning and understanding of tectonic conditions, these challenges can be reduced and lead to sustainable development. The area helped.
Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. Am. J. Sci. 307, 1064–1095. https://doi.org/10.2475/07.2007.02
-Al-Mahdi, B., Mohammad, A.A., 2014. Morphotectonic analysis of Wadi Al-Na’aman, northern Iraq. Arab. J. Geosci. 7, 1041–1050. https://doi.org/10.1007/s12517-012-0698-8
-Ayazi, M.A., Ghassemi, M.R., Talebian, M., 2010. Satellite gravity anomalies and their implications for the morphotectonics of the Zagros Mountains, Iran. J. Asian Earth Sci. 39, 196–208. https://doi.org/10.1016/j.jseaes.2010.02.006
-Burberry, C.M., Jackson, J.A., 2013. Offshore continuation of the Zagros Main Frontal Thrust in the western Gulf of Oman, from seismic reflection data. Geol. Soc. Lond., Spec. Publ. 372, 27–41. https://doi.org/10.1144/SP372.10
-Chiu, H.-Y., Chung, S.-L., Zarrinkoub, M.H., Willett, S.D., Yeh, M.-W., Lin, I.-J., Chen, Y.-G., Lee, T.-Y., He, L., 2013. Zircon U-Pb and Hf isotopic constraints from the Zagros orogen, Iran. Gondwana Res. 24, 1092–1106. https://doi.org/10.1016/j.gr.2013.02.005
-El-Rayes, M.M., El-Shazly, A.K., El-Khashab, A.M., 2023. Morphotectonic analysis of the Southern Suez Canal Province, Egypt: A key to mitigate environmental hazards. Environ. Earth Sci. 82, 1–20. https://doi.org/10.1007/s12665-022-10735-7
-Haberland, C., Rümpker, G., Giese, P., Farahani, H.R., Hushmandi, A., 2020. Crustal structure of the Zagros orogeny from receiver function analysis and 3-D gravity modeling. Geophys. J. Int. 220, 1680–1698. https://doi.org/10.1093/gji/ggz492
-Harding, T. P. (1985). Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. AAPG Bulletin, 69(4), 582-600.
-Hessami, K., Koyi, H.A., Talbot, C.J., Tabasi, H., Shabanian, E., 2001. Progressive unconformities within an evolving foreland fold-and-thrust belt, the Zagros Mountains of Iran. J. Geol. Soc. 158, 969–981. https://doi.org/10.1144/0016-764901-008
-Kadinsky-Cade, K., & Barazangi, M. (1982). Structural evolution of the Zagros fold-thrust belt, southwestern Iran. Tectonophysics, 85(3-4), 269-313.
-Kaplay, R.S., Sheth, H.C., Kumar, R., 2017. Morphotectonic evolution of the western continental margin of India inferred from SRTM data. Geomorphology 295, 170–185. https://doi.org/10.1016/j.geomorph.2017.06.012
-McCall, G. J., Kidd, W. S., & Molnar, P. (1994). The geophysics of subduction zones: an update. Reviews of Geophysics, 32(3), 221-259.
-McClay, K. R., & Bonora, M. (2001). Analogue models of restraining stepovers in strike-slip fault systems. American Association of Petroleum Geologists Bulletin, 85(4), 601-616.
-McQuarrie, N., Stock, J.M., Verdel, C., Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30, 1243. https://doi.org/10.1029/2002GL016622
-Mokhtari, M., Hessami, K., Koyi, H.A., 2008. Geometry and kinematics of the Zagros Main Frontal Thrust in the Lurestan Province, Iran. J. Asian Earth Sci. 32, 407–419. https://doi.org/10.1016/j.jseaes.2007.11.006
-Moody, J. D., & Hill, M. J. (1956). Wrench fault tectonics. Geological Society of America Bulletin, 67(9), 1207-1246.
-Pajang, A., Mazzotti, S., Vannucchi, P., 2021. Seismic characteristics of the western offshore Oman Sea. Mar. Geol. 433, 106435. https://doi.org/10.1016/j.margeo.2021.106435
-Pajang, A., Zarei, M., & Dehghani, A. (2021). Distribution and characteristics of mud volcanoes in the Makran accretionary prism, southeastern Iran. Journal of Asian Earth Sciences, 219, 104822.
-Pajang, A., Zarei, M., & Dehghani, A. (2022). Mud volcanoes in the Makran accretionary prism, southeastern Iran: A review of their distribution, characteristics, and implications for hydrocarbon exploration. Earth-Science Reviews, 225, 103949.
-Penney, C., Jackson, J. A., & McKenzie, D. (2017). The geometry of the Makran subduction zone: A new subduction interface model from seismic tomography. Geophysical Research Letters, 44(18), 9294-9302.
-Peyret, G., Walpersdorf, A., Hatzfeld, D., Tavakoli, F., Ghafory-Ashtiany, M., 2009. GPS velocity field of Iran and implications for the motion of the rigid blocks in the Middle East. Geophys. J. Int. 177, 1377–1390. https://doi.org/10.1111/j.1365-246X.2009.04135.x
-Peyret, G., Walpersdorf, A., Hatzfeld, D., Tavakoli, F., Ghafory-Ashtiany, M., 2009. GPS velocity field of Iran and implications for the motion of the rigid blocks in the Middle East. Geophys. J. Int. 177, 1377–1390. https://doi.org/10.1111/j.1365-246X.2009.04135.x
-Ramadan, E. M., El-Sheikh, A. A., & Abdel-Rahman, M. A. (2014). Fault plane solutions of earthquakes in the Gulf of Suez, Egypt: Implications for regional tectonics and stress distribution. Journal of African Earth Sciences, 99, 864-875.
-Ramirez, J.M., Herrera, G., Morphotectonic evolution of the Altiplano and adjacent regions in the central Andes. J. South Am. Earth Sci. https://doi.org/10.1016/j.jsames.2022.103793
-Ramsey, L.A., 2008. Structural evolution of the Zagros fold-thrust belt, Iran: New insights from seismic reflection data. Geol. Soc. Lond., Spec. Publ. 301, 1–41. https://doi.org/10.1144/SP301.1
-Rando, J. C., & McClay, K. R. (2007). The role of the Himalayan orogeny in the development of the Makran accretionary prism: New insights from the Makran 2005 cruise. Geophysical Research Letters, 34(18).
-Ravaut, C., Villemin, T., Cattin, R., Arpe, M., & Bourles, D. (1998). The Oman line: A late Cretaceous-Paleocene suture between the Arabian and Eurasian plates. Geology, 26(11), 1035-1038.
-Ravaut, M., Armijo, R., Tapponnier, P., Mercier, J.L., 1998. Quaternary kinematics of the Gobi Altay and Tien Shan in western China from GPS measurements. Geophys. Res. Lett. 25, 2179–2182. https://doi.org/10.1029/98GL01396
-Regard, V., Bellier, O., Thomas, J. C., & Bourlès, D. L. (2010). Kinematics of the Minab-Zendan fault (Iran) from GPS measurements: Implications for the present-day deformation of the Zagros fold-and-thrust belt. Geophysical Journal International, 180(1), 334-346.
-Regard, V., Bellier, O., Thomas, J.C., Bourlès, D.L., Bonnet, C., Mohazzabi, P., Mercier, J.L., Shabanian, E., Soleymani, S., 2005. Accommodation of Arabia-Eurasia convergence in the Zagros Mountains of Iran. J. Geophys. Res. Solid Earth 110. https://doi.org/10.1029/2003JB002923
-Regard, V., Bellier, O., Thomas, J.C., Bourlès, D.L., Bonnet, C., Mohazzabi, P., Mercier, J.L., Shabanian, E., Soleymani, S., 2004. Late Cenozoic evolution of the Zagros folded belt: Insights from a seismic reflection profile in the Dezful Embayment, Iran. Geology 32, 649–652. https://doi.org/10.1130/G20566.1
-Ricou, L. E. (1977). Origin of the Zagros mountains: active continental collision. Tectonophysics, 38(1-2), 1-29.
-Ruh, J., Regard, V., Bellier, O., & Bourlès, D. (2018). The Makran accretionary wedge (SE Iran): New insights into its structural evolution and kinematics from GPS measurements and seismic data. Tectonics, 37(12), 4419-4440.
-Stoneley, R., 1990. The geology of the Oman Mountains. Geol. Soc. Lond., Spec. Publ. 49, 1–30. https://doi.org/10.1144/GSL.SP.1990.049.01.01
-Talebian, M., Jackson, J., 2004. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros Mountains of Iran. Geophys. J. Int. 156, 506–526. https://doi.org/10.1111/j.1365-246X.2004.02167.x
-Taylor, G.J., Howard, K.A., 2000. Structural controls on the evolution of Elysium Mons, Mars. J. Geophys. Res. Planets 105, 15047–15065. https://doi.org/10.1029/1999JE001187
-Walker, R., & Jackson, J. (2002). Offset and evolution of the Gowk fault, southern Iran: A major intra-continental strike-slip fault. Journal of Structural Geology, 24(11), 1677-1698.
-Walpersdorf, A., Hatzfeld, D., Nankali, H., Tavakoli, F., Ghafory-Ashtiany, M., 2006. GPS-derived crustal deformation in Iran. Geophys. J. Int. 167, 1128–1138. https://doi.org/10.1111/j.1365-246X.2006.03116.x
-Zalan, P. V. (1987). Geometry and kinematics of the Zagros fold-thrust belt, southwestern Iran. Tectonics, 6(3), 323-338.