مطالعه تطبیقی مقادیر برآورد شده تبخیر- تعرق با استفاده از روش تشت تبخیر و مدل FAO56-PM واسنجی شده برمبنای مؤلفه تابش
محورهای موضوعی : فصلنامه جغـرافیازهرا آقاشریعتمداری 1 , نرگس اطمینان 2 , فائزه رفیعی فر 3
1 - استادیار گروه آبیاری وآبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران
2 - مدرس دانشگاه فنی و حرفه ای، آموزشکده کشاورزی پاکدشت
3 - دانشجوی دوره کارشناسی، گروه آبیاری وآبادانی، دانشکده مهندسی و فناوری کشاورزی ، پردیس کشاورزی و منابع طبیعی دانشگاه تهران
کلید واژه: مدل FAO56_PM, مقیاس زمانی روزانه, تبخیر-تعرق پتانسیل, ایستگاه تحقیقاتی هواشناسی کشاورزی کرج,
چکیده مقاله :
تابش خورشید منبع نخستین انرژی برای کلیه فرآیندهای بیوشیمیایی و فیزیکی در سطح زمین و یکی از مهمترین عوامل محیطی تأثیرگذار بر رشد و نمو گیاهان زراعی است. در هواشناسی کشاورزی داشتن مقادیر تابش دریافتی از خورشید بهویژه برای محاسبه تبخیر-تعرق و نیاز آبی گیاهان ضروری است. باتوجه به ضرورت آگاهی از مقادیر تابش خورشیدی در فرآیند مدل سازی واکنش های زیست شناختی و در نتیجه مدیریت کارآمد و بهرهبرداری بهینه از منابع کشاورزی، برآورد میزان انرژی دریافتی از خورشید در هرمنطقه با استفاده از دادههای همدیدی و بکار بردن مدلی که بهترین نتیجه را داشته باشد امری ضروری است. هدف از این مطالعه ارزیابی تأثیر واسنجی مؤلفه تابش مدل FAO56_PM در مقادیر برآورد شده تبخیر-تعرق و همچنین بررسی میزان همبستگی نتایج حاصل از مدل های برآورد تبخیر- تعرق با برآوردهای حاصل از تشت تبخیر می باشد. برای این منظور دادههای روزانه هواشناسی مورد نیاز مربوط به سال های 2003-2002 ایستگاه کرج پس از کنترل کیفی و آزمون همگنی مورد استفاده قرار گرفتند. در اولین مرحله مؤلفه تابش طول موج کوتاه خورشیدی بر اساس مقادیر روزانه واسنجی شد و با جایگزینی در ساختار مدل میزان حساسیت مدل به واسنجی این مؤلفه از تابش بررسی شد. نتایج نشان داد که تفاوت معنی داری بین نتایج حاصل از مدل اصلی و مدل های واسنجی شده FAO56_PM وجود ندارد. علاوه براین با مقایسه برآوردهای تبخیر-تعرق حاصل از مدل FAO56_PM و روش تشت تبخیر مشاهده شد همبستگی بین مقادیر حاصل معنی دار نبوده و مقادیر برآورد شده تبخیر-تعرق با استفاده از روش تشت تبخیر نسبت به مدل FAO56_PM از اعتبار چندانی برخوردار نمی باشند.
آقاشریعتمداری، ز.، 1390. ارزیابی مدلهای مختلف برآورد تابش کلی خورشیـد بر سطح افقی بر اسـاس دادههای هواشناسی و با تأکید بر مدل آنگستروم در گستره ایران، رساله دکتری. دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران.
Ahmad, F., Ulfat, I., 2004. Empirical models for the correlation of monthly average daily solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan. Turkish Journal of Physics, 28: 301-307.
Akpabio, L. E., Udo, SO., Etuk, SE., 2004. Empirical correlation of global solar radiation with meteorological data for Onne, Nigeria. Turkish Journal of Physics. 28: 222-227.
Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 1998. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome.
Angstrom, A., 1924. Solar and terrestrial radiation. Quarterly Journal of the royal meteorological society, 50: 121-126.
Angstrom, A., 1956. On the computation of global solar radiation from records of sunshine. Arkiv Geof. 2, 471-479.
Awachi, A., Okeke, C. 1990. New empirical model and its use in predicting global solar irradiation. Nigerian Journal of Solar Energy, 9: 143-156.
Badescu, V., 2008. Modeling soalr radiation at the earth surface. Verlag Berlin Heidelberg. Springer.
Bristow K., and Campbell G.S. 1984. On the relation between incoming solar radiation and daily maximum and minimum temperature. Agricultural and forest meteorology, 31: 159 -166.
El-Sebaii, A., Trabea, A. 2005. Estimation of global solar radiation on horizontal surface over Egypt, Egypt Journal of Solids. 28, 163-175.
Falayi, E., Robiu, A. 2005. Modeling global solar radiation using sunshine duration data, Nigerian journal of Physics. 17S, 181-186.
Faybenle, R. 1990. Estimation of total solar radiation in Nigeria using meteorological data. Nigerian Journal of Solar Energy, 14: 1-10.
Hargreaves, G.H., 1994. Defining and using reference evapotranspiration., Journal of Irrigation and drainage engineering. ASCE., 120(6): 1132-1139.
Kasten F. 1983. Parametriserung der globalstrahlung durch bedekungsgrad und trubungsfactor. Ann. Meteorol, 20:49-50.
Khalili, A., Rezaeisadr, H., 1997. Estimation of global solar radiation based on climatological data over Iran. Geographical Research Journal. 84: 15-35 (In Persian)
Liu, X., Mei, X., Li, Y., Porter. J. R., Wang, Q., Zhang, Y., 2010. Choice of the Angstrom-Prescott coefficients: Are time-dependent ones better than fixed ones in modeling global solar irradiance? Energy Conversion and management,51: 2565-2574.
Liu, X., Mei, X., Li, Y., Zhang, Y., Wang, Q., Jensen, J. R., Porter. J. R., 2009. Calibration of the Angstrom-Prescott coefficients (a,b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin. Agricultural and forest meteorology, 149: 697-710.
Moradi, I., 2009. Quality Control of global solar radiation using sunshine duration hours. Energy, 34: 1-6.
Pennman, H. L. 1948. Natural Evaporation from open water, bare soil and grass. Royal Society of London. A193, 120-146.
Prescott, J. A., 1940. Evaporation from a water surface in relation to solar radiation. Transactions of The Royal Society of South Australia, 64: 114-118.
Priestley, G.H.B. and Taylor, R.J. 1972. On the assessment of the surface of the heat flux and evaporation using large scale parameters. Monthly Weather Review, 100(2): 81-92.
Sambo, A. S. 1985. Soalr radiation in Kano, Acorrelation with meteorological Data. Nigerian Journal of Solar Energy, 4: 59-64.
Sayigh, A. A. 1993. Improved statistical procedure for the evaluation of solar radiation stimating models. Solar Energy, 51: 289-291.
Serm, J., Korntip, T. 2004. A model for the estimation of global solar radiation from sunshine duration in Thailand. The joint international conference on Suitable energy and Environment (SSE), pp: 11-14.
Skeiker, K. 2006. Correlation of global solar radiation with common geographical and meteorological parameters for Damascus province, Syria, Energy Conversion and Management, 47: 331-345.
Temesgen, B., Eching, S., Davidoff, B. and Frame, K. 2005. Comparision of some reference evapotranspiration equations for California. Journal of Irrigation and drainage engineering, 131(1): 73-84.
Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Georgr. Rev., 38: 55-94.
Thornton P.E., and Running S.W. 1999. An improved algorithm for estimating incident daily solar radiation from measurements of temperatures, humidity and precipitation. Agricultural and forest meteorology, 93: 211-228.
Udo, S. 2002. Contribution to the relationship between solar radiation of sunshine duration to the tropics, A case study of experimental data at IIorin , Turkish Journal of Physics, 26: 229-236.
Wright, J.L., Allen, R.G. and Howell, T.A. 2000. Conversion between evapotranspiration references and methods. In: proceedings of the 4th National Irrigation Symposium. ASAE, Phoenix, AZ.
Yaghubi, M. A., Jafarpour, K. 1990. Global solar radiation in fars province. Iranian Journal of Science & Technology, 14: 47-62.
Yin, Y., Wu, S., Zheng, D. and Yang, Q. 2008. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in china. Agricultural water management, 95: 77-84.